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LONG-TERM GOALS 
 
The development of new geoacoustic inversion methods, their use in the analysis of shallow water 
experimental data, and evaluation of geoacoustic model and parameter uncertainties including the 
mapping of these uncertainties through to system performance uncertainties.  
 
OBJECTIVES 
 
Analysis of geoacoustic inversion data collected from various experiments. Of specific technical 
interest are: (1) development of methods to track the environmental parameters using sequential 
filtering, (2) use of ambient noise for estimation of seafloor structure parameters, and (3) the 
development of new inversion methods for use into the kHz frequency regime. In an ONR Graduate 
Traineeship Awards we address using Random Matrix Theory in ocean acoustics. 
 
APPROACH 
 
1. Sequential filtering 
 
A common feature of inverse problems in ocean acoustics is that estimates of underlying physical 
parameters are extracted from measured acoustic data. Geoacoustic inversion has been approached in 
the same framework, estimating, in addition to source location, ocean environment parameters and 
their uncertainty. Often, those parameters evolve in time or space, with acoustic data arriving at 
consecutive steps. Information on parameter values and uncertainty at preceding steps can be 
invaluable for the determination of future estimates but is often ignored. 
 
Sequential Bayesian filtering, tying together information on parameter evolution, a physical model 
relating acoustic field measurements to the unknown quantities, and a statistical model describing 
random perturbations in the field observations, offers a framework for the solution of such problems.  
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2. Extracting information from noise cross-correlations 
 
We have focused extensively on extracting information from noise in ocean acoustics with both 
theoretical work as well as experimental work. The passive fathometer is based on relating the down- 
and up-going signals received on an array and can be implemented in the time or frequency domain. 
Here, we are exploring the passive fathometer by aligning arrivals using phase information from the 
fathometer (currently only the magnitude is used). We have evidence that the vertical fathometer array 
moves with the waves on the sea surface. Thus if we can correct for this movement it will be possible 
to align the reflections better and then average the reflection time series with phase as opposed to just 
using the envelope. This should give sharper definition of the seafloor and sub bottom reflections and 
enables estimating environmental geoacoustic parameters in addition to depths of reflecting layers.  
 
For noise cross-correlation in general, we are exploring accelerating convergence for the noise cross-
correlation by various signal processing strategies, e.g. averaging, rejecting interference dominated 
time series, eigenvalue/eigenvector decomposition, and focusing on specific arrivals using 
beamforming.  
 
WORK COMPLETED 
 
One application of passive estimation of the time-domain Green’s function is in the use of cross-
correlations of upward and downward pointing vertical line array beams observing ambient noise to 
extract seabed layer structure (i.e. a passive fathometer) [Traer et al., 2011, 2012].  This passive 
fathometer technique exploits the naturally occurring acoustic sounds generated on the sea-surface, 
primarily from breaking waves. The method is based on the cross-correlation of noise from the ocean 
surface with its echo from the seabed, which recovers travel times to significant seabed reflectors. To 
limit averaging time and make this practical, beamforming is used with a vertical array of hydrophones 
to reduce interference from horizontally propagating noise. The initial development used conventional 
beamforming, but significant improvements have been realized using adaptive techniques. An 
analytical model is presented in [Traer et al., 2011] for the passive fathometer response to ocean 
surface noise, interfering discrete noise sources, and locally uncorrelated noise in an ideal waveguide. 
The leading order term from the ocean surface noise produces the cross-correlation of vertical 
multipaths, yielding the depth of sub-bottom reflectors.  
 
We have explored incorporating Kalman and particle filter tracking techniques into the geoacoustic 
inversion problem [Yardim 2011a, 2011b, 2012, 2013, Michalopoulou 2012]. This enables spatial and 
temporal tracking of environmental parameters and their underlying probability densities, making 
geoacoustic tracking a natural extension to geoacoustic inversion techniques. 
 
RESULTS 
 
Geoacoustic tracking 
 
In many cases, it is of interest to estimate geoacoustic parameters over a larger spatial region rather 
than just the parameters characterizing propagation between a fixed source and receiver (or receiving 
array) location. Data might be available at a moored vertical receiving array from a towed acoustic 
sound source or a source might be received by a towed horizontal array. In both cases, the typical 
approach would be to treat each record of data independently of the others and carry out a full 
geoacoustic inversion for every record resulting in a sequence of geoacoustic parameter estimates and, 
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in some cases, posteriori probability densities of the environmental parameters. The latter enables the 
environmental uncertainty to be projected into other waveguide characterizations such as propagation 
loss and its uncertainty.  
 
In a review paper we have studied the basis and use of sequential filtering in ocean acoustics [Yardim 
2011]. Sequential filtering provides a consistent framework for estimating and updating the unknown 
parameters of a system as data become available, see Figs. 1-2.  Despite significant progress in the 
general theory and implementation, sequential Bayesian filters have been sparsely applied to 
geoacoustic inversion in ocean acoustics. The foundations of sequential Bayesian filtering with 
emphasis on practical issues are first presented covering both Kalman and particle filter approaches. 
Filtering becomes a powerful estimation tool, employing prediction from previous estimates and 
updates stemming from physical and statistical models that relate acoustic measurements to the 
unknown parameters. Ocean acoustic applications are then reviewed focusing on the estimation of 
environmental parameters evolving in time or space. Some possible scenarios for geoacoustic 
inversion are shown in Fig. 3. 
 
Random matrix theory 
 
A new direction is taken in Menon [2012a, 2012b, 2012c 2013] and Gerstoft [2012] where random 
matrix theory is used to analyze noise cross-spectral density matrices. A random matrix is a matrix-
valued random variable, i.e., the elements are stochastic variables. RMT can be used to study the 
distribution of eigenvalues under asymptotic assumptions.   
 
Isotropic noise fields are often used to model environmental noise surrounding an array of sensors. For 
a line array of equidistant sensors in such a noise field, the true covariance matrix of the observations 
in the frequency domain is a symmetric Toeplitz sinc matrix. In Menon [2012a], we derive the 
eigenvalues of the true covariance matrix as the size of the matrix approaches infinity. For arrays 
spaced at less than half a wavelength apart, the covariance matrix is shown to be rank deficient and 
this has implications in techniques such as adaptive beamforming, which require the inverse 
covariance matrix. The zero eigenvalues are related to classical array processing concepts such as the 
invisible region in frequency-wavenumber space (region where there is no propagating energy, but a 
spectrum can be calculated). Using random matrix theory, we derive the eigenvalue density of the 
sample noise covariance matrix (SCM, or cross-spectral matrix), whose knowledge is useful in reliable 
signal detection. An example of such processing is seen in Figure 4. 
 
Often the ocean acoustic data SCM is assumed to consist of a few large signal-plus-noise eigenvalues 
followed by a set of equal-value noise-only eigenvalues representing uncorrelated noise. However, it is 
well-known that the SCM from real data observations is characterized by steadily decaying noise-only 
eigenvalues.  In array processing, a common rule of thumb is that the SCM is “well-estimated” when 
the number of snapshots is 2 to 3 times the array dimension.  This depends on the type of noise and 
application under consideration. Often, the number of snapshots available for forming the SCM is less 
than this, especially for large arrays.  Using Random Matrix Theory (RMT) to model the statistical 
properties of the SCM, the eigenvalue distributions are more informative than using the expectation 
alone.  
 
Here we will use the SCM to extract eigenvalue distributions for representative noise scenarios and 
this will quantify the information content in the data. The excellent matching of SCM eigenvalues 
using RMT is demonstrated using data from a towed horizontal array during the long range acoustic 
communications (LRAC) experiment from 10:00-11:00 UTC on 16 September 2010 in the NE Pacific 
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in 5-km water depth. Other data periods yield similar results to those shown here. The array was towed 
at 3.5 knots at a depth of 200 m. The data were sampled at 2000 Hz using a nested array with each 
configuration having 64 channels.  
 
Figure 5 shows the eigenvalues of the SCM at selected values β, the element spacing to wavelength 
ratio, for the four arrays. Due to the low sampling frequency (2000 Hz), the HF array only can be used 
up to β=1/4 (1000 Hz). All eigenvalues are based on one-hour observations, meaning that for M=64 
the eigenvalues are averaged over 13 SCM eigenvalues. The first few eigenvalues for each SCM likely 
are due to the distant transiting ships and noise from the towship, as seen in the beamform power vs 
angle time series. The eigenvalues drop sharply above 2β(N-1)+1 (vertical dotted line) as predicted by 
theory, and indicates that the coherent noise is stronger than the incoherent noise. The eigenvalues of 
the SCM of the LF and ULF arrays show a similar behavior as the MF and HF arrays though with less 
strong transition between the two eigenvalue regimes. 
 
Figure 5 shows that the eigenvalues depend on β. As β increases, all the eigenvalue spectra become 
more extended and at β=0.5 (half wavelength spacing) the SCM ideally should become diagonal with 
eigenvalues that approximately are all equal. Comparing the four arrays at β=1/8, first column in Fig. 5 
shows that the higher eigenvalue numbers (containing mostly incoherent noise) are relatively larger at 
low frequencies. At half-wavelength spacing β=1/2, last column in Fig. 5, all eigenvalues remain large 
for the three arrays, except when using a relatively small number of snapshots (M=N). 
 
The observed and modeled noise eigenvalues are compared in Fig. 6. It is important to realize that 
there is towship radiated noise as well as broadband signatures from several distant ships arriving at 
the array, especially at low frequencies. These “signals” are among the largest eigenvalues extracted 
from the data.  
 
Broadband synthetic aperture geoacoustic inversion 
 
Typically, matched-field inversion experiments use large-aperture arrays and powerful transmissions 
with high SNR. However, single-receiver/synthetic aperture inversion methods are preferable 
operationally due to ease of deployment. Furthermore, low SNR methods are attractive due to their 
ability to use low powered sources, e.g., battery powered acoustic sources, resulting in less disturbance 
to marine mammals. Tan el [2013] focuses on matched field inversion for mobile, single source-
receiver configurations in low SNR conditions.  
 
IMPACT / APPLICATIONS 
 
Geoacoustic inversion techniques are of general interest for the estimation of waveguide parameters 
thus facilitating system performance prediction in shallow water. Natural transition paths for these 
results will be the PEO-C4I Battlespace Awareness and Information Operations Program Office 
(PMW-120) and the Naval Oceanographic Office. 
 
RELATED PROJECTS 
 
None.  
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Figure 1. Sequential Bayesian filtering. From state xk−1, state xk is first predicted via the state 

equation, providing xk|k−1 . As data yk becomes available, the observation equation is employed to 
update state xk|k-1 , providing xk|k . 

 

 
 

Figure 2. A quick guide to filter selection leading to the Kalman filter (KF), extended Kalman filter 
(EKF), unscented Kalman filter (UKF), and particle filter (PF). 

 

 
 

Figure 3. Geoacoustic environmental tracking: (a) Temporal tracking of the ocean sound speed 
profile for a fixed-receiver and a fixed-source and (b) tracking of the changing environment 

between the receiver and a moving source. Here shown for a vertical line array (VLA) of receivers. 
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Figure 4. Asymptotic eigenvalue density (solid line) and the empirical 
eigenvalue density, with N = 100 array elements, ν = 1/4 (ratio of number of sensors to number of 

snapshots) and spacing to wavelength ratios β of (a) 1/4 (b) 1/2 and (c) 3/4. (d,e,f): Same as in 
(a,b,c) except with N = 20. The dotted lines show the locations of the distinct non-zero true 

eigenvalues. For more information see Menon [2012a]. 
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Figure 5.  Eigenvalues of the towed array SCM for  HF array (1st row, β=1/8,1/4), MF array (2nd 
row, β=1/8, 1/4, 1/2), LF array (3rd row, β=1/8, 1/4, 1/2), and ULF array (4th row, β=1/8, 1/4, 1/2).  

The eigenvalues are based on 64 (ν=1, dashed) and 864 (ν=13, solid) snapshots.  
The eigenvalues are normalized with the largest eigenvalue and the vertical dotted line  

indicates the edge of the visible region, β is the element spacing to wavelength ratio.   
For more information see Gerstoft [2012]. 
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Figure 6.   Comparison of observed and modeled eigenvalues. Eigenvalues of the towed array SCM 
(solid) and modeled eigenvalues 3D  (dashed) and 2D (dash-dotted) for HF array (1st row, β=1/8, 
1/4) and LF array (2nd row, β=1/8, 1/4, 1/2). The observed eigenvalues are based on 864 (ν=13, 

solid) snapshots, the modeled eigenvalues use a coherent/incoherent noise ratio 700 for HF array 
and coherent/incoherent noise ratio 100 for LF array. The eigenvalues are normalized with the 

largest eigenvalue and the vertical dotted line indicates the edge of the visible region, β  is element 
spacing to wavelength ratio. For more information see Gerstoft [2012]. 

 


