
1 
 

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 
 
 

Spatio-Temporal Characterization of Bio-acoustic  
Scatterers in Complex Media 

 
Karim G. Sabra, 

School of Mechanical Engineering, Georgia Institute of Technology 
Atlanta, GA 30332 

Phone: (404) 385-6193     Fax(404)  894-1658     E-mail: karim.sabra@me.gatech.edu  
 

Award number: N000141110259 
 
 

LONG TERM GOALS 
 
To develop a numerically efficient methodology for modeling the acoustic response of large aggregate 
of biological scatterers to parameterize acoustic models for long-range SONAR measurements 
 
OBJECTIVE 
 
Characterization of biologically-induced ocean reverberation features is key to effectively parameterize 
acoustic models and thus ultimately improve the detection performance of long-range SONAR 
systems. In particular, scattering from fish schools can significantly contribute to volume reverberation 
in the open ocean measured by mid-frequencies tactical SONAR (1kHz-10kHz), especially if the 
resonance frequencies of the fish’ air-filled swim bladder is excited. Furthermore, multiple scattering 
effects from the incident acoustic wave and the collective arrangement of fish lead to complicated 
frequency response functions. The bio-acoustics properties of the fish body and geometry can also 
contribute to the scattering response and can be incorporated into an accurate scattering model.  
 
The objective of this research is to characterize the relevant spatial and temporal scales of bio-acoustic 
scatterers generating ocean reverberation to effectively parameterize acoustic models and improve the 
detection performance of long-range SONAR systems. To do so, we developed an efficient modeling 
technique to predict the scattered fields from large fish schools (which can cause especially high false-
alarm rate for mid-frequency SONAR systems.), which readily account for the fish acoustic properties, 
school’s spatial configuration and multiple scattering effects. 
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Fig. 1 School of Fuseliers fishes (Papua New Guinea), photo by Randy Harwood. 

 
WORK COMPLETED 
 
Two key observations can be made about large fish schools. First, in large schools, fishes typically 
swim in a periodic arrangement where fishes are regularly spaced by approximately one-body length in 
all three dimensions (see Fig. 1). Second large fish schools (e.g. several km wide) can have dimensions 
exceeding several thousand of wavelengths of the SONAR’s frequency. Hence, based on these two 
observations, we will treat large fish schools as an infinitely large system generated by tessellating in 
3D a unit volume cell containing a single fish (e.g. see Fig. 2). This infinite system can be modeled as 
a periodic phononic crystal which is a special class of well-studied periodic materials that support 
acoustic or elastic waves. In our case, the infinite phononic fish crystal (FC) contains a host medium 
(homogenous, quiescent water) and periodically spaced inclusions (fish bodies).  

 
Incident acoustic energy onto the FC causes an infinite number of multiple scattering, Bragg scattering, 
and inclusion resonance phenomena. These scattering events establish a dispersion relationship which 
governs harmonic wave propagation in the FC. Notably, there are frequency ranges, termed band gaps, 
where acoustic waves are prohibited from propagating in the crystal [1]. Analyzing the FC dispersion 
relationship yields an infinite set of mode shapes, with corresponding harmonic frequencies and 
wavenumbers, analogous to a finite vibrational system, that describe the pressure field. The Bloch 
theorem [2], which accounts for all orders of multiple scattering, is employed to calculate the 
dispersion relationship and modes of the infinite fish crystal. Use of this theorem allows one to study a 
single unit cell and simultaneously gain knowledge of the entire domain. For simplicity, we will focus 
on two dimensional geometry only, where now the FC is an infinite array of periodically spaced fish 
bodies in a water background. Fig. 3a shows a representative 2D FC with a unit cell (Fig. 3b) 
containing a circle of radius R corresponding to the air filled 
swimbladder 3

2 1.22kg/mρ = , 2 343m/sc =  in a water background with 3
1 11000kg/m , 1500 m/scρ = = . 

Here the dimensions of the unit cell are 1 2 40 cma a= =  and R = 2 cm which represent a single air 
filled fish swimbladder [3].  
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Fig. 2 A basic school unit. The schools are constructed from cubic cellular units (or unit cell). The 
packing density is determined by the distance d between closest neighbors (Reproduced from 

Feuillade et al.) [3]. 
 

 
 

Fig. 3 (a) A representative two dimensional periodic fish crystal and (b) the unit cell studied where 
the circular inclusion represents the fish’ air filled swimbladder. 

 
 
In a two dimensional periodic lattice the pressure ( ),p tx  at any point x  in the FC can be represented 
using the Bloch theorem (assuming harmonic time dependence of frequencyω ) by 
 ( ) ( ) ( ), expp t p i tω = ⋅ − x x k x   (1) 

where ( )p x   is a function periodic on the unit cell, hereby termed a wave mode, and the vector k  is 
the Bloch wavevector and is related to ω  by a dispersion relationship. Every field quantity in the FC 
obeys the relation of Eq. (1) – a periodic function modulated by a harmonic plane wave. Periodicity of 
the FC imposes that unique Bloch waves, given by Eq. (1), are found with the real part of the Bloch 
wavevector components within the range / /j j ja k aπ π− ≤ ≤ . However, the imaginary components of 
the wavevector are unbounded [4].  
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To investigate the acoustic reflection from a large fish school, we suppose an incident homogenous 
water medium adjacent to a semi-infinite FC half space, see Fig 4. At a given frequency and incident 
wavevector ik  we can find a finite number of propagating Bloch waves, given by the constraints of the 
FC periodicity, and an infinite number of evanescent waves which account for the near field refraction 
behavior at the FC boundary [4]. The propagating and evanescent Bloch waves constitute a complete 
basis [5] and justify a Bloch wave expansion for the wave field within the FC. We will utilize the 
Bloch wave expansion, first outlined in [6], along with a plane wave expansion for the reflected field 
to compute the acoustic reflection from the semi-infinite fish school. 

 
Fig. 4  A half space consisting of a homogenous water medium and a PC. Three reflected wave 

orders and the incident plane wave are included for an example. 
 
Identification of the Bloch waves that constitutes the expansion set requires studying the Helmholtz 
equation with spatially varying density ρ  and speed c   
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Insertion of the Bloch theorem from Eq. (1) and simplification results in a homogenous equation that is 
next discretized on the unit cell using the finite element method (FEM). Enforcement of matching 
parallel wavelengths between the incident plane wave and the Bloch waves and application of periodic 
boundary conditions on the finite element mesh of the unit cell results in a quadratic eigenvalue 
problem 
 ( ) 2k kω + + = D A B p 0   (3) 

where here xk k=  is the unknown wavenumber of the periodic Bloch wave mode p  (discretized 
version of p ) [7]. The FEM matrices in Eq. (3) contain the unit cell’s geometry and swimbladder’s 
biological information. Solution of Eq. (3) yields propagating and/or evanescent Bloch waves 
depending on the frequency; propagating waves with a group velocity vector pointing away from the 
FC medium are discarded from the expansion as these waves violate energy conservation for this 
particular problem. 
 
At this point we have N Bloch waves (N eigenvalues k and eigvenfunctions np  ), and subsequently use 
N reflected wave orders. The periodicity of the interface creates a diffraction grating and constrains the 



5 
 

parallel component of the reflected wavevectors mk  [6]. We write an expansion for the transmitted 
(into FC) and reflected wave fields as 

 ( ) ( ) ( )
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where now ,n mt r  are unknown modal coefficients to be solved for. Enforcing continuous pressure and 
normal particle velocity boundary conditions between the homogenous medium and FC results a 
system of linear equations for the modal coefficients. The entire pressure field within the FC and 
reflected wave field can now be calculated. We can define an average power reflection coefficient WR  
from the resulting reflected and incident time-averaged intensity fields ,r iI I    
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Note this coefficient depends on frequency ω  and the angle of the incident plane wave θ  ( 0θ =  for 
normal incidence), as well as the spatial and biologic properties of the FC. 
 
To verify the Bloch wave expansion and associated reflected wave field, we have compared our 
methodology with independent finite element software. The finite element model contains over 4000 
unit cells, chosen to be approximately infinite in extent, and specialized radiation boundary conditions. 
Excellent agreement is seen between the real and imaginary parts of the pressure field between the 
Bloch wave expansion and the finite element model in Fig. 5. 
 
It was earlier stipulated that wave propagation is forbidden for frequencies within a band gap of the 
FC’s dispersion relationship. Here, the power reflection is unity, as all acoustic energy is reflected 
away and a decaying field remains in the FC domain. Analysis of the dispersion relationship not only 
yields band gaps, but regions of incident wave angles whereby perfect acoustic reflection also occurs. 
Following the analogy of acoustic reflection from homogenous medium, we term these angles 
‘critical’. The strong acoustic reflection from the FC could lead to the possibility of predicting strong 
SONAR returns for given incident wave parameters. In Fig 6a, at 39 krad/sω =  , we graphically 
display the critical angle data – an incident wavevector in the shaded region will yield perfect acoustic 
reflection from the FC. Fig. 6b compares the power reflection predicted from the critical angles to the 
power reflection resulting from direct numerical evaluation. 
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Fig. 5  A comparison of the real (top) and imaginary (bottom) components of the pressure field from 
the Bloch expansion (line) and the numerical model (dots) field, along a horizontal line centered at 

y = 8.2 m. Here ω = 24000 rad/s and θ = 45 degrees and the interface is demarcated by a vertical 
dashed line. 

 

 
 
Fig. 6 (a) A graphical display of the critical angles where shaded regions indicate ranges of critical 
angles. (b) Validation of the critical angle observation versus direct numerical calculation (dots). 

Solid lines are from wedge regions from (a). 
 
CONCLUSIONS 
 
The work here enforces the approximation of a large number of scattering bodies as an infinite periodic 
system amenable to Bloch analysis. Modeling the fish school reflection using this approach has a few 
benefits: (1) computational advantage of studying a single swimbladder which can have an arbitrary 
shape and biological properties via the FEM (2) there are no frequency limitations to the model, (3) all 
orders of multiple scattering are easily included and (4) the possibility of predicting frequencies and 
angles that yield strong SONAR returns. Recent work has even extended this modeling methodology 
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to three dimensions. Future work will compare the infinite FC model to very large, yet finite sized, fish 
schools and the effect of random perturbations of fish within the school. 
 
IMPACT 
 
It is conjectured that the results of this study could potentially be used to reduce the uncertainty of 
SONAR prediction modeling tools due to marine biota, thus ultimately improving the remote 
detection, classification and localization of marine biota using long-range mid-frequency SONAR 
systems. 
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