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LONG TERM GOALS 
 
Development of accurate and fast advanced statistical and dynamical nonlinear models of ocean 
surface waves, based on first physical principles, which will improve and accelerate both long term 
ocean surface wave turbulence forecasts and prediction of strongly coherent events, such as freak 
waves and wave-breakings.     
 
OBJECTIVES 
 
Creation of better statistical models for improvement of existing operational wave prediction 
programs; study of non-stationary waves growth in presence of wind; interpretation of experimental 
data through study of self-similar solutions of Hasselmann equation; studying the integrability of 1D  
dynamical equations for surface waves; study of the possibility of generalization of compact 1D water 
waves equation for 2D situation; study of the implications of modulational instability on solitons, 
rogue waves and air-surface interaction. 
 
APPROACH 
 
Numerical methods for solution of integro-differential equations; analytical self-similar solutions for 
integro-differential equations; Hamiltonian formalism; comparison of analytical and numerical 
solutions with experimental data; analytical and numerical solution of approximate models for deep 
water surface waves 
 
WORK COMPLETED 
 

• We propose to use new wind forcing source term, which is analytical solution of Hasselmann 
equation, consistent with experimental data and numerical simulation  

• We prove that there is no reason to include dissipation in the spectral maximum area. Instead, 
we justify localization of dissipation in high wave-numbers area 

• We re-examine energy balance in the wind-driven sea and find that the major term in the 
energy balance is nonlinear interaction term nlS . This fact explains Kolmogorov-Zakharov 
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weak-turbulent spectra 4~ −ωωI  and 3/11~ −ωωI  and self-similar behavior both in 
experimental observations and numerical simulation as well 

• We propose new framework for simulation of Hasselmann equation  based on exact nonlinear 
interaction term in Webb-Resio-Tracy (WRT) form, new wind input term and wave-breaking 
damping localized in high wave-numbers 

• We found that majority of field and wave tank experimental data can be explained in terms of 
self-similar solution of the Hasselmann kinetic equation. The self-similarity explains 
persistence of the “magic links” connecting indices of energy and mean frequency 
dependencies in fetch- and duration-limited setups 

• We analyzed proposed alternative framework for HE simulation through massive numerical 
experiments of Hasselmann equation and found that they reproduce more than a dozen of field 
experiments 

• Based on the idea of nonlinearity domination and self-similarity, we developed the set of tests 
allowing separating physically based wind input terms from non-physical ones 

• We show that central role of self-similar regimes explains very simple “universality of the 
wind-driven sea”, connecting average steepness, frequency of the spectral peak and fetch. This 
universality is observed in majority of field and wave tank experiments. This is strong 
confirmation of our basic concepts 

• We propose and compare with the original exact 1D Euler dynamical equation its cost-effective 
simplification  

• We analyze relation of modulational instability and coherent events such as solitons and freak 
waves 

• We study the peculiarities of breaking waves and air flow interaction, allowing to understand 
air structures formation and their influence on surface waves 

 
RESULTS 
 

1. Alternative framework for Hasselmann equation simulation 
 
It is generally accepted nowadays that ocean surface wave turbulence is described by Hasselmann 
equation (HE) 
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for spectral energy density ),,( trk εε = ,  wave dispersion )(kωω =  and nonlinear, wind input and 
wave-breaking dissipation terms nlS , inS  and dissS  correspondingly. 
 
While this acceptance implicitly assumes that HE is some sort of mathematical reduction of primordial 
Euler equations for incompressible fluid with free surface, it is true, in fact, only for advection  
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As far as concerns inS  and dissS  terms, there is no consensus in the worldwide oceanographic 
community about their parameterization. To our belief, it is the one of the reasons, indeed, for “tuning 
knobs” (adjusting coefficients) necessity in operational models for their adjustment to changing ocean 
situations. 
 
Another reason for using “tuning knobs” is underestimation of the leading role of nlS . In other words, 
the role of the “tuning knobs” also consists in “undoing” the deformation incurred to the model 
through substituting of the exact nlS  nonlinear term with DIA-like simplifications. 
 
Current state of inS  wind input source terms 
 
Nowadays, the number of existing models of inS  is large, but neither of them have firm theoretical 
justification. Different theoretical approaches argue with each other. A detailed description of this 
discussion can be found in paper [R1] and monograph [R2]. Other models are presented in papers 
[R3]-[R7]. The majority of inS   models follow quasi-linear Miles approach [R8]. While we believe 
that this approach is the most relevant, the self-consistent derivation of inS  in the framework of this 
approach is hampered by the lack of information about fine structure of turbulent atmospheric 
boundary layer near the sea surface.  
 
A systematic experimental study of this structure has just been started (see, for instance, the 
remarkable article [R9]). Experimental data about inS  are scarce. Moreover, in some cases 
experiments interpretation could be seriously criticized.  
 
Let's get to the point in the details. 
 
Consider the so-called "method of fractional growth" [R10], [R11] and [R3]. The first starting 
equation in those publications (up to the constants) is: 
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which is, in fact, the linear part, or just two terms of the energy balance HE: 
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In this approach advection 
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∂ εω  and nonlinear nlS terms of HE are absent.  Why are those terms 

neglected? Why, if this absence is justified, so many efforts were spent to improve the numerical 
simulation of nonlinear term nlS ?  Wouldn’t it be easier just to solve analytically the linear Eq. (1)?  

Perhaps, some members of oceanographic community believe that equalization of the 
t∂

∂ε  and γε  

terms in the balance equation (2) could be justified by the fact that the leading term in the equation is 
defined by conservative (in a sense of wave action, not energy and momentum) relationship 
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Such equalization of two small terms in presence of two big ones is a not a good practice, in our 
opinion. 
 
In a sense, the above author’s stance is understandable, since the measurements of neither advection 
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 , nor nonlinear nlS  terms are easy.  But inability of measurement of those important terms 

cannot be acquittal for using wrong equations. Moreover, even if they managed to measure somehow 

advection 
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  and nlS  terms, how would they separate the effects of the wind forcing and the 

dissipation inγ ? 
 
In fact, the same trick was also used by W. J. Plant in his well-know paper in 1982 [R15], but Plant 
emphasized that Eq.(1) can be used only "...if the wind speed is suddenly increased from zero..." (see 
p.162, upper left column). Such situations can be realized in a wave tank at the very beginning of 
waves excitation by the wind, but can not be applied for the situation of limited fetch (which is almost 
always present in the measurements) growth experiments and/or developed seas. 
 
In a nutshell, such measurements use inappropriate interpretation technique, and the conclusions based 
on them cannot be considered as trustworthy ones.  
 
To stress the level of scatter in different models of inS , we refer to fundamental review article [R16] 
"Wave modeling -- the state of art", published in "Progress of Oceanography" in 2007 by members of 
WISE group. In this paper a reader can find two different expressions for dimensionless quantity 
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40.0=q , while Eq.(2.4) gives 23.1=q  -- the difference of three times! Notice that the equation for 
our new wind input term 
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gives 216.0=q . 
 
In reality, nonlinear nlS  term is the leading term in ocean energy balance [R12], [R13]. It consists of 
two parts: 

kkknl FS εΓ−=  
which almost compensate each other. Otherwise, one cannot explain persistent presence of Zakharov - 
Filonenko asymptotic 4~ −ωωI  which is the exact solution of the equation 0=nlS .  Such asymptotic of 
the rear face of the spectrum is observed in almost all field setups (including experiments by Resio and 
Long [R20], [R21]) and many numerical calculations (for instance [R17], [R18]).  
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It was numerically shown in papers [R12], [R13] that in typical situation kkεΓ  surpasses inS  by the 
order of magnitude. Together with ubiquity of 4−ω asymptotic this is the clear manifestation of nlS  
domination. Notice that this statement was actually formulated by K. Hasselmann and collaborators in 
1976 [R14].  
 
It is important, therefore, to consider inS  wind input term as a perturbation to leading nlS nonlinear 
term. For fetch limited case this approach was realized in our work [R19] through finding specific self-
similar solution of HE 
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 Assumption that the new wind input term has the form 
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and comparison with the results of experimental observations [R20], [R21] allows finding 
corresponding exponents 
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Those dependencies lead to the dependencies of total energy  
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and frequency  
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on the fetch coordinate x. 
 
As a result, the new wind input term (named hereafter ZRP forcing) takes the form 
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The coefficient 0.05 in front of the new wind input term Eqs.(8) was found through carefully 
performed numerical experiments (which used exact WRT form of nlS  term) via tuning the inS  term 
to maximum number of experimental data. 
 
Two scenarios of wave-breaking dissipation term dissS : spectral peak or high-frequency 
domination? 
 
In current section we explain why there is no need to use dissipation in the spectral peak area. 
 
The spectral peak frequency damping is widely accepted practice, and is included as an option in the 
operational models WAM, SWAN and WAVEWATCH. Historically, it was apparently done by need.  
 
Consider, for example, Snyder's version of inS , which is no better justified then others, but for no clear 
reason is more popular. We tested Snyder's version of inS  in our model and found that it is too strong 
(will be shown below), since it leads to the wave energy levels exceeding experimentally observable 
by several times. Obviously, to get acceptable energy levels, one had to add extra low-frequency 
damping, and that was apparently the reason for including damping in the spectral peak area. 
 
Now let us proceed with the discussion of high-frequency dissipation function as possibly the most 
correct choice. Traditionally, it is usually argued that experimental observations [R3], [R4] confirm 
that wave breaking of dominant waves is associated with energy loss near spectral peak.  Here we 
explain why the energy loss in spectral peak vicinity does not necessary mean that damping is present 
in the spectral peak vicinity. 
 
Wave-breaking is one-dimensional event in real space. First notice that analytical theory of such events 
is not developed yet. In out opinion, this theory can be based on the following fact: primordial Euler 
equations for potential flow of deep fluid with free surface has the self-similar solution 
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This solution was studied numerically in the framework of simplified MMT (Maida-MacLaughlin-
Tabak) model of Euler equations [R23]. 
 
In Fourier space this solution describes the propagation to high wave-numbers and returning back to 
dominant wave spectral peak of fat spectral energy tail, corresponding in real space to sharp wedge 
formation at 0=t  and space point 0=x . This solution describes formation of the "breaker". 
 
In the absence of dissipation, this event is invertible in time. Presence of high-frequency dissipation 
chops off the end of the tail, just like “cigar cutter", and violates the tail’s invertability. Low and high 
harmonics, however, are strongly coupled in this event due to strong nonlinear non-local interaction, 
and deformed high wave-numbers tail is almost immediately returns to the area of spectral peak.  As 
soon as fat spectral tail return to the area of the spectral peak, total energy in the spectrum diminishes, 
which causes settling of the spectral peak at lower level of energy. This process of "shooting" of the 
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spectral tail toward high wave-numbers, and its returning back due to wave breaking is the real reason 
of "sagging down" of the energy profile in the spectral peak area, but was erroneously associated with 
the presence of the damping in the area of spectral peak. 
 
This explanation shows that individual wave-breakings studies [R3], [R4] are not the proof of spectral 
peak damping presence. 
 
Also there is another, direct proof of the fact that damping is localized in the area of short waves. It is 
the measurements of quazi-one-dimensional "breakers" speed propagation -- strips of foam, which 
accompany any developed wave turbulence. Those airplane experiments, recently performed by 
P.Hwang and his team [R24], [R25], show that wave breakers propagate 4-5 times slower than crests 
of leading waves!  
 
Based on the above discussion, we propose to use only high-frequency damping as a basis of 
alternative framework of HE simulation. One can “implicitly” insert this damping very easily without 
knowing its analytic form via spectral tail continuation by Phillips law 5~ −ω . 
 
Replacement of high-frequency spectrum part by Phillips law is not our invention.  It is the standard 
tool offered as an option in operational wave forecasting models, known as the "parametric tail", and 
corresponds to high-frequency dissipation, indeed. For the practical definition of Phillips tail it’s 
necessary to know two more parameters: coefficient in front of it and starting frequency. The 
coefficient in front of 5−ω  is unknown, but is unnecessary to be known in the explicit form – it is 
dynamically defined from the continuity condition of the spectrum. As far as concerns another 

unknown parameter – the frequency where Phillips spectrum starts – we define it as Hz 1.1
2π
ωf 0

0 ==  

as per Resio and Long experimental observations [R20], [R21]. That is the way the high frequency 
implicit damping is incorporated into alternative computational framework of HE. 
 
We think that the question of finer details of high-frequency damping structure is of secondary 
importance at current stage of alternative framework development. 
 
Checking of the new modeling framework against theoretical predictions and experimental 
results 
 
To check alternative framework for HE simulation, we performed numerical tests for waves excitation 
in limited fetch conditions using alternative framework. As it was already mentioned, alternative 
framework is based on exact nonlinear term nlS  in WRT form and ZRP new wind input term inS  in the 
form of Eqs.(8) [R19]. 
 
Fig.1 shows that total energy is growing along the fetch by power law in accordance with Eq.(6) with 
p=1.0 
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Fig.1 Left figure: solid line – numerical experiment, dashed line – fit by 2
7109.2

U
xg

⋅⋅ − .  

Right figure: exponent p of the energy growth as the function of fetch x 
 
Dependence of mean frequency of the fetch shown on Fig.2 also demonstrates perfect correspondence 
of numerical results and corresponding self-similar solution dependence Eq.(7 ) with q=0.3 
 

  

Fig.2 Left figure: solid line – numerical experiment, dashed line – fit by 
3.0

24.3
−







⋅
U
xg .  

Right figure: exponent of the energy growth as the function of fetch x 
 

Left side of Fig.3 presents directional spectrum as a function of frequency in logarithmic coordinates. 
One can see that energy curve on the left figure consists of segments of: 
 

• the spectral maximum area 
• Kolmogorov-Zakharov  spectrum 

4

~
−

ω  
• Phillips high frequency tail 5~ −ω  

 
Right side of Fig.3 shows log-log derivative of the spectral curve from the left figure, which 
corresponds to the exponent of the local power law. Again, one can see the areas corresponding to 
Kolmogorov-Zakharov index -4 and Phillips index -5. The value of the index to the left side from -4 
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has the tendency to grow, which qualitatively corresponds to the “inverse cascade” Kolmogorov-
Zakharov index -11/3. 

 

  

Fig.3 Left figure: upper solid line – logarithm of spectral density as a function of logarithm of 

frequency 
π
ω
2

=f ,   

dashed line – fit 4~ −ω , dash-dotted line – fit 5~ −ω . Right figure: local exponent of ω  calculated 
from the left figure 

 
Fig.4 present combination (10q-2p) as function of fetch x. It is in perfect accordance with self-similar 
prediction Eq.(4). 
 

 
 

Fig.4 “Magic relation” (10q-2p) as a function of the fetch x 
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We conclude that alternative framework of HE simulation reproduces the following analytical features 
of HE: 
 

• Self-similar solutions with correct exponents 
• Kolmogorov-Zakharov spectra 

4

~
−

ω  
 

Table 1 presents results of calculation of exponents p and q ( see Eqs.(3)-(7) ) for 14 different 
experimental observations. The last row presents them for above described ZRP numerical 

experiment for limited fetch growth within alternative framework. One can see good correspondence 
between the theoretical, experimental and numerical values of p and q. 

 
Experiment p q 
Black Sea (Babanin & Soloviev 1998b) 0.89 0.275 
Walsh et al. (1989) US coast 1.0 0.29 
Kahma & Calkoen (1992) unstable 0.94 0.28 
Kahma & Pettersson (1994) 0.93 0.28 
JONSWAP by Davidan (1980)  1.0 0.28 
JONSWAP by Phillips (1977)  1.0 0.25 
Kahma & Calkoen (1992) composite  0.9 0.27 
Kahma (1981, 1986) rapid growth  1.0 0.33 
Kahma (1986) average growth  1.0 0.33 
Donelan et al. (1992) St Claire  1.0 0.33 
Ross (1978), Atlantic, stable  1.1 0.27 
Liu & Ross (1980), Michigan, unstable  1.1 0.27 
JONSWAP (Hasselmann et al. 1973)  1.0 0.33 
Mitsuyasu et al. (1971)  1.008 0.33 
ZRP numerics 1.0 0.3 

Table 1 
 
Tests for separation of trustworthy wind input terms inS  from non-physical ones. 
 
As it was already discussed, nowadays there are plenty of historically developed wind input terms. 
Analysis of nonlinear properties of HE in the form of specific self-similar solutions and Kolmogorov-
Zakharov law for direct energy cascade allows us to propose set of test, which would allow separation 
of physically justified wind-input terms inS  from non-physical ones.  
 
As such, we propose: 
 

• checking powers of observed energy and mean frequency dependencies along the fetch versus 
predicted by self-similar solutions 

• checking the “magic relations” Eq.(4) between exponents p and q of observed energy and 
frequency dependencies along the fetch 

• checking exponents of directional spectral energy dependencies versus Kolmogorov-Zakharov 
exponent -4  

 
We applied such tests to several popular wind input terms in fetch limited statement within alternative 
framework: 
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• Chalikov inS  term (see [R26]) 
• Snyder inS  term (see [R27]) 
• WAM3 inS  term (see [R28]) 

 
Test of Chalikov form of inS  
 
Fig.5 shows that total energy growth along the fetch significantly exceeds observed in ZRP simulation, 
and doesn’t have correct value of exponent p=1.0  
 

  
Fig.5 Same as Fig.1, but for Chalikov inS  

 
Dependence of mean frequency against the fetch shown on Fig.5 is also in poor correspondence with 
ZRP numerical results and corresponding self-similar exponent q=0.3 
 

  
Fig.6 Same as Fig.2, but for Chalikov inS  

 
Left side of Fig.7 presents directional spectrum as a function of frequency in logarithmic coordinates. 
One can see that similar to ZRP case we observe: 
 

• the spectral maximum area 
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• Kolmogorov-Zakharov segment 
4

~
−

ω  
• Phillips high frequency tail 5~ −ω  
 

Right side of Fig.7 shows log-log derivative of the energy curve from Fig.5, which corresponds to the 
exponent of the local power law. Again, one can see the areas corresponding  Kolmogorov-Zakharov 
index -4 and Phillips index -5. The value of the index to the left side of -4 has a tendency to grow, 
which qualitatively corresponds to the “inverse cascade” Kolmogorov-Zakharov index -11/3. 
 

  
Fig.7 Same as Fig.3, but for Chalikov inS  

 
Fig.8 present combination (10q-2p) as a function of fetch distance x. It is surprising that it is in perfect 
accordance with the relation Eq.(4) !  It mean that despite incorrect values p and q along the fetch, their 
combination (10q-2p) still holds in complete accordance with theoretical prediction, i.e. self-similarity 
is fulfilled locally. 
 

 
Fig.8 Same as Fig.4, but for Chalikov inS  
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Test of Snyder form of inS  
 
Fig.9 shows that total energy growth along the fetch significantly exceeds ZRP simulation, but has the 
value of growth exponent close to p=1.0 versus fetch coordinate x.  
 

  
Fig.9 Same as Fig.1, but for Snyder inS  

 
Dependence of mean frequency against the fetch is shown on Fig.10 is in not good correspondence with 
ZRP numerical results, and fairly good correspondence with self-similar solution index q=0.3 
 

  
Fig.10 Same as Fig.2, but for Snyder inS  

 
Left-hand side of Fig.11 presents directional spectrum as a function of frequency in logarithmic 
coordinates. One can easily see: 
 

• the spectral maximum area 
• Kolmogorov-Zakharov segment 

4

~
−

ω  
• Phillips high frequency tail 5~ −ω  
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Right side of Fig.11 shows log-log derivative of the energy curve from Fig.9, which corresponds to 
the exponent of the local power law. Again, one can see the areas corresponding  Kolmogorov-
Zakharov index -4 and Phillips index -5. The value of the index to the left side of -4 has a tendency to 
grow, which qualitatively corresponds to the “inverse cascade” Kolmogorov-Zakharov index -11/3. 

 

  
Fig.11 Same as Fig.3, but for Snyder inS  

 
Fig.12 presents the combination (10q-2p) as function of fetch. Again, it is in perfect accordance with 
the theoretical relation Eq.(4 )!  As in Chalikov case it means that despite incorrect values of p and q 
along the fetch, their combination (10q-2p) still holds in complete accordance with theoretical 
prediction, i.e. self-similarity is also fulfilled locally in Snyder case. 
 

  
Fig.12 Same as Fig.4, but for Snyder inS  
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Test of WAM3 form of inS  
 
Fig.13 shows that total energy growth along the fetch dramatically underestimates ZRP simulation, 
and has the value of growth exponent p asymptotically going to 0 versus fetch coordinate x. 
 

  
Fig.13 Same as Fig.1, but for WAM3 inS  

 
Dependence of the mean frequency against the fetch shown on Fig.14 demonstrates strong discrepancy 
with ZRP results and corresponding self-similar solution index q also goes to 0: 
 

  
Fig.14 Same as Fig.2, but for WAM3 inS  

 
Left side of Fig.15 presents directional spectrum as a function of frequency in logarithmic coordinates. 
One can see: 
 

• the spectral maximum area 
• Kolmogorov-Zakharov segment 

4

~
−

ω  
• Phillips high frequency tail 5~ −ω  
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Right side of Fig.15 shows log-log derivative of the energy curve from Fig.13, which corresponds to 
the exponent of the local power law. Again, one can see the areas corresponding  Kolmogorov-
Zakharov index -4 and Phillips index -5. The value of the index to the left side off -4  has the tendency 
to grow, which qualitatively corresponds to the “inverse cascade” Kolmogorov-Zakharov index -11/3. 
 

  
Fig.15 Same as Fig.3, but for WAM3 inS  

 
Fig.16 presents combination (10q-2p) as function of the fetch coordinate x. It is in total disagreement 
with the theoretical predictions. There is no any indication of even local fulfillment of the “magic 
relation” Eq.(4). 
 

 
Fig.16 Same as Fig.4, but for WAM3 inS  

 
 
Summary of testing for different wind input terms 
 
We applied set of nonlinear tests to different kinds of wind input terms and there are several 
conclusions we can make: 
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1. ZRP forcing term perfectly satisfies theoretical criteria like Kolmogorov-Zakharov spectrum 
4~ −ω  , self-similar solutions with exponents p=1 and q=3, “magic relation” 10p-2q=1 and 

more than a dozen of real experiments, see Eqs.(3)-(7) and Table 1. Therefore, it can serve as a 
benchmark. 

2. All wind input terms pass the test for presence of Kolmogorov-Zakharov law 4~ −ω  
3. WAM3 case fails to pass all the tests except test #2  
4. Chalikov case fails p and q test, but passes “magic relation” test (quazi-self-similarity) 
5. Snyder case “approximately” passes p- and q-test and the “magic relation” one. 

 
In a nutshell, the nonlinearity influence is so strong in the dynamics of HE that one can’t “spoil” 
Kolmogorov-Zakharov law 4~ −ω  for any tested wind input term inS . Self-similarity tests like p- and q-
tests are more sophisticated one. And “magic relation” test is probably somewhere in-between versus 
detection of the “quality” of particular wind input term.  
 
 
2. Universality of wind-wave growth 
 
Nowadays, studies of wind-driven sea waves are usually focused on wind forcing rather than on the 
effect of inherent nonlinear wave dynamics. We propose a simple relationship between instant wave 
steepness and time or fetch of wave development expressed in wave periods or lengths 
 

3
0

4 ανµ =        (9) 
 

Here g
E p

22/1 ωµ =  is wave steepness defined in terms of total wave energy E  and spectral peak 

frequency pω , ν is a number of waves. For the duration-limited setup one has 
 

tpων =        (10) 
 
For the fetch-limited case we keep 

 
xk p2=ν        (11) 

 
where coefficient 2 reflects the ratio of phase and group velocity of deep water waves. With Eqs. (10), 
(11) the universal constant 0α  has to take different values for duration- and fetch-limited setups. We 
introduce two different constants 7.0)(0 =dα  and 62.0)(0 =fα  based on our previous numerical and 
experimental studies [R29], [R32]. 
 
The law Eq. (9) does not contain wind-sea interaction parameters explicitly and relies upon asymptotic 
theory where wave nonlinearity is assumed to be a leading physical mechanism. The validity of this 
law is illustrated by results of numerical simulations of growing wind seas.  
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Numerical studies of wave growth for duration-limited setup 
 
Fig.17 shows the results of simulations of duration-limited growth within the HE with the exact 
calculation of nonlinear term. The strong tendency of the invariant Eq. (9) to attract the theoretical 
limit 7.0}{0 =dα is seen fairly well. 

 
Fig.17 Dependence of parameter 3

14
0 )( νµα = :  (a) non-dimensional duration 

10U
gt=t and (b) 

inverse wave age g
Up 10ωσ =  in simulations of duration-limited wind wave growth [R29], [R30], 

[R31]. Simulation setups (wind input parameterization and wind speed) are given in legends. The 
horizontal dotted line shows theoretical value 7.0)(0 =dα . 

 
 
Numerical studies of wave growth for fetch-limited setup 
 
This case has been considered in terms of dimensionless dependencies of wave height on wave period. 
Within the proposed approach that does not rely upon wind parameters and dimensionless variables 
can be introduced as follows for duration- 
 

t
TTgt

HH π2
~;~

2 ==      (12) 

and fetch-limited setups 
 

x
gTTx

HH 28
~;~

π==      (13) 

 
Simulations of the fetch-limited growth have been carried out by A. Pushkarev (Zakharov, Pushkarev 
2012) and used considered evolution of wave spectra both in time and space. Fig.18 shows an 
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intermediate nature of asymptotic of the solutions. In the left panel the scaling Eq.(13) has been used. 
The fetch-limited asymptotical dependence  
 

2
5~59.5~ TH =  

 
works quite well in a range. For large time the corresponding curves are tending to a saturation: wave 
field start to develop in a duration-limited regime. 
 
The right panel of Fig.18 shows the same results in terms of time scaling Eq. (12) that gives the law 
 

4
9~06.3~ TH =  

 
Again, we see proximity of the simulation results to the theoretical curve in an intermediate range of 
dimensionless wave periods. 

 

 
 

Fig.18 Wave growth curves in simulations of fetch-limited setup (Zakharov, Pushkarev 2012) 
within: (a) fetch scaling;  (b) duration scaling. Curves are given for fixed fetches 1, 2, 4, 8, 16, 32 

km (see legends). Theoretical dependencies are shown by dotted lines. 
 
Thus, the proposed theoretical law Eq.(9) is verified in an extensive numerical study and provides the 
tool for diagnosis of wind wave growth. 
 
3. Comparison of compact equation for surface waves with fully nonlinear equations 
 
We compare applicability of the recently derived compact equation for surface waves with the fully 
nonlinear equations. Strongly nonlinear phenomena, namely modulational instability and breathers 
with the steepness 0.4≈µ  are compared in numerical simulations using both models. 
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For the fully nonlinear model we have chosen free surface equation written in the conformal variables, 
VR − -equations [R36] :  

 
 1)()(=),(= −+−− RgRBUViVRUURiR ωωtωωt  (14) 

 
 Now U  and B  are the following:  

 
)(ˆ=)(ˆ= VVPBRVRVPU +  

  
So, these exact Eqs.(14) give us reference solutions to compare with. 
 
For the approximate model we used compact equations derived in [R37], [R38] : 
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Transformation from ),( txb  to physical variables ),( txη  and ),( txψ  can be recovered from canonical 
transformation. Here we write this trasformation up to the second order:  
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Here Ĥ  - is Hilbert transformation with eigenvalue )(kisign . 
 

Modulational instability of wave train 
 

We performed numerical simulation of the modulational instability of the homogeneous wavetrain in 
the framework of compact Eq.(15). Initial steepness of the wave train was equal to 0.095=µ . This 
value was chosen for comparison with the earlier simulation in the framework of fully nonlinear 
simulation [R39], [R40]. One can see in Fig.19 and Fig.20 that both waves coincide in details. 
Different time of their appearance is due to slightly different values of perturbations.  
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Fig.19 Freak-wave formation after t=802 (fully nonlinear equation) 
 

                 
 

Fig.20 Freak-wave formation after t=874 (compact equation) 
 
 

Breathers 
 

We have also performed simulations of narrow breathers both in the framework of fully nonlinear 
conformal Eq.(14) and compact Eq.(15). Here we present pictures of the steepness of the surface of the 
fluid: 
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Fig.21 Steepness of the breather (compact equation). 
 

   
 

Fig.22 Profile of steepness (fully nonlinear equations). 
   

 
We have demonstrated that compact equation, although approximate, quantitatively describes strongly 
nonlinear phenomena at the surface of potential fluid. We also have studied especially nonlinear stage 
of modulational instability up to the freak-wave formation and propagation of very steep breather. 
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3. Modulational instability and coherent event for surface waves. Air-surface interaction. 
 
The research has dealt mainly with different aspects of nonlinear waves relevant to understanding of 
ocean wave dynamics. It is well known that shallow water is stable in particular at kh<1.36 where k is 
the wave number and h is the water depth -- modulational instability cannot take place in these 
conditions. However, it has been shown in [P3] that two waves propagating in shallow water at 
different angles can be unstable to long wave modulations. Analytical solutions of the coupled 
nonlinear Schrödinger equation are reported and discussed in [P3]. This family of solutions includes 
bright-dark and dark-dark rogue waves. The link between modulational instability (MI) and rogue 
waves is displayed by showing that only a peculiar kind of MI, namely baseband MI, can sustain 
rogue-wave formation. The existence of vector rogue waves in the defocusing regime is expected to be 
a crucial progress in explaining extreme waves in a variety of physical scenarios described by multi-
component systems, from oceanography to optics and plasma physics.  
 
Coherent structures in shallow water are studied in paper [P4]. Within a number of approximations, the 
dynamics of surface gravity water waves in finite depth can be described by self-defocusing nonlinear 
Schrodinger equation. It is well known that dark solitons are exact solutions of such equation. In the 
present paper it has been shown that gray solitons can be produced in the wave tank experiments.  
 
Air-water interaction phenomena taking place during the breaking of ocean waves are investigated in 
[P5]. The study is carried out by exploiting the combination between potential flow method, which is 
used to describe the evolution of the wave system up to the onset of the modulational instability, and 
two-fluid Navier–Stokes solver which describes strongly non-linear air–water interaction taking place 
during breaking events. The potential flow method is based on fully non-linear mixed Eulerian–
Lagrangian approach, whereas the two-fluid model uses a level-set method for the interface capturing. 
The method is applied to study the evolution of a modulated wave train composed by a fundamental 
wave component with two side band disturbances. It is shown that breaking occurs when the initial 
steepness exceed threshold value. Typical wave breaking events are shown on Fig.23. Once the 
breaking starts, it is not just a single event, but it is recurrent with a period associated to the group 
velocity. Results are presented in terms of free surface shapes, velocity and vorticity fields, energy and 
viscous dissipation. The analysis reveals the formation of large vortex structures in the air domain, 
which are originated by the separation of the air flow at the crest of the breaking wave. This forms drag 
associated with the flow separation process and significantly contributes to the dissipation of the 
energy content of the wave system. 
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Fig.23 Surface elevation during wave breaking from 

 numerical computation of the Navier Stokes equation. 
 
Paper [P6] is an interdisciplinary paper where some properties of the nonlinear energy transfer are 
observed in numerical computations of Nonlinear Schrodinger equation, and in the optical fibers 
experiments. In particular it has been shown that the phenomenon of intermittency takes place also in 
integrable systems. This is a very important result that can be used to understand statistical properties 
of small scales ocean waves. 
 
IMPACT/APPLICATIONS 
 

• Improvement of the quality of operational wave forecasting programs.  

• Better understanding the nonlinear ocean surface wave dynamics 

• Creation of simplified models of nonlinear surface waves 

• Better understanding of ocean waves – airflow interaction  

 
RELATED PROJECTS 
 
NONE 
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