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LONG-TERM GOALS 
 
To develop a robust automatic classifier with a high probability of detection and a low false alarm rate 
that can classify vocalizations from a variety of cetacean species in diverse ocean environments. 
 
OBJECTIVES 
 
In previous work as part of ONR grant N000141210139 a unique automatic classifier developed by the 
PI that uses perceptual signal features –features similar to those employed by the human auditory 
system– was employed to successfully classify anthropogenic transients, and vocalizations from five 
cetacean species.  Although this is a significant achievement, successful implementation of this (or 
any) classifier requires that it be temporally and spatially robust.  The primary goal will be to address 
the question: “Will it work on vocalization data from these species collected under different 
environmental conditions?”  To examine this, discriminant analysis will be used to rank the aural 
features in terms of their ability to separate the vocalizations between species.  Then, the more highly 
ranked features will be tested for robustness.  This will be done by performing a propagation 
experiment using cetacean vocalizations and synthetically generated calls as source signals, and testing 
the received signals with the classifier.  The measurements will be complemented by comparing 
experimental results to propagation model results with the goal of generalizing the results to other 
ocean environments. 
 
APPROACH 
 
The research is part of a PhD program undertaken by Ms. Carolyn Binder under the supervision of Dr. 
Paul C. Hines.  The postgraduate program is being conducted collaboratively in the Oceanography and 
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Electrical Engineering departments at Dalhousie University where Dr. Hines holds adjunct professor 
and research posts, and at Defence R&D Canada–Atlantic where Ms. Binder is a researcher. 
 
Passive acoustic monitoring (PAM) is widely in use to study marine mammals; since marine mammals 
can be found in all ocean basins, their habitats cover diverse underwater environments. It is well 
known that acoustic propagation can vary substantially between environments which can result in 
distortion of acoustic signals [1-3].  This in turn, can lead to environment-dependent time-frequency 
characteristics of a received vocalization.  The resulting distortion of vocalizations may impact the 
accuracy of PAM systems.  Thus, to develop a classification system capable of operating in many 
environments one must understand the role of propagation on the classifier. 
 
A prototype aural classifier developed at Defence Research and Development Canada has successfully 
been used for inter-species discrimination of cetaceans [4]. The aural classifier is an effective PAM 
tool because it employs perceptual signal features, which model features used by the human auditory 
system [5].  The proposed research aims to examine the robustness of this classifier, and the perceptual 
features it uses, to environmental conditions.  To accomplish this, propagation experiments were 
conducted by transmitting a set of real and synthetic vocalizations from bowhead and humpback 
whales, and measuring the received signals at a variety of ranges [6].  The transmitted and received 
signals will be tested using the aural classifier to identify any performance degradation due to 
propagation.  The measurements will be complemented by propagation-model results using 
environmental inputs measured during the experiments.  The model results will provide physical 
insight into what propagation effects have the greatest impact on the classifier’s robustness, and aid in 
generalizing the experimental results to other ocean environments.  It also enables one to put bounds 
on realistic within-environment variability.  It is worthy of mention that there is no study published in 
the literature that systematically analyzes the impacts of propagation on an automated classifier, using 
both underwater propagation experiments and complementary modeling. 
 
If it is found (as is anticiapted) that propagation does impact some features, then the next step is to rank 
the features in order of their sensitivity to propagation-related effects. Features which are especially 
sensitive to the acoustic environment might simply be removed from the aural classifier.  Alternatively, 
it may be found that many of the perceptual features are environment-sensitive and therefore it is 
unreasonable to exclude all of them.  In this case, a strategy may instead be developed to generate 
training sets for the classifier that take propagation-related signal distortion into account; this could be 
done either by acoustically distorting the training data by propagating them through a modeled 
environment or by including vocalizations in the training set that came from a variety of propagation 
ranges as done in [7, 8]. 
 
WORK COMPLETED (FY 2014) 
 
The focus of the effort during FY 2014 has been two-fold: 
 

1. Identify a propagation model suitable for model-data comparison and perform preliminary 
modeling using that model. 

2. Begin detailed analysis of the data collected during the propagation experiments to test the 
robustness of the aural classification feature set.  Details of the experiment are reported in [6] 
and are not repeated here due to space limitations, but a schematic of the experimental 
geometry is shown in Figure 1. 
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Propagation model selection: A variety of numerical techniques have been developed to study ocean 
acoustic propagation. These include ray tracing, normal modes, parabolic equation, wavenumber 
integration, and finite element models [2, 9]; each has its advantages and no single method is suitable 
for handling all the possible environmental conditions, frequencies, and transmission ranges that are 
dictated by various applications [10]. There were several essential features as well as some additional 
desired features taken into account during model selection: The essential features of the model are: 

• It must have an accurate representation of bottom interactions since much of the cetacean PAM 
occurs in shallow water [11]. 

• It must be capable of handling a wide frequency range to encompass the low frequency range 
of bowhead and humpback vocalizations (extending down to approximately 50 Hz) as well as 
the higher frequencies used for the propagation experiments (1–4 kHz)1. 

• It must be accurate over the relevant spatial scales (tens to hundreds of kilometers).   

• It must be capable of performing pulse propagation that can simulate a time-domain 
representation of a signal after it has been propagated through a modeled environment.   

In addition to these essential features, it is desirable if the model is: 

• range-dependent since shallow water environments are often range-dependent, 

• ‘public domain’ or non-proprietary to facilitate collaboration and ease of access, 

• reasonably easy to implement. 
 
The Ocean Acoustics and Seismic Exploration Synthesis (OASES) model, a general-purpose computer 
code for modeling seismoacoustic propagation was chosen [12].  It can be used to propagate signals 
through a user-defined environment using wavenumber integration which provides extremely accurate 
results; and it can determine the acoustic field for multiple sources and receivers simultaneously. 
OASES is a modern version of the SAFARI model and has the reputation of being very efficient code.  
The pulse propagation module in OASES know as OASP, is easily interfaced with all the other 
processing modules of OASES (e.g., transmission loss), and the range-independent modules were 
freely available for download.  The model outputs the received pressure time series for each source 
signal.  The time series is representative of a signal recorded on a hydrophone located at depth z in the 
water column after the signal was transmitted range R through the ocean environment.   OASES-OASP 
has previously been used to localize North Atlantic right whales because of its ability to properly treat 
the physical effects typical of a shallow-water waveguide [13]. OASES-OASP can handle range-
dependent environments if the appropriate modules are licensed and implemented, but the range-
dependent modules have yet to be implemented in this study. 

Although OASES was selected as the primary model for this research, it does not preclude the use of 
other models. For example, ray-based models may be employed during the course of the research to 
provide additional insight into the acoustic propagation physics.  There is insufficient space to review 

                                            
1 All vocalizations –real and synthetic– were up-sampled to the 1–4 kHz frequency band prior to transmission. Although 
this was motivated by limitations in transducer bandwidth, transmitting signals in this higher band had several advantages: 
experiments were shorter in duration due to the time compression of the pulse sequence; high frequency signals attenuate 
more rapidly than low frequency signals so that the spatial extent of the experiments was decreased, thereby reducing the 
environmental impact; and the potential of behavioral impact on marine mammals in the area was reduced because the 
signals would not be misinterpreted as real whale vocalizations by marine life. 



4 

all the modeling approaches and computer implementations associated with them.  Instead, the salient 
points associated with them are summarized in Table I, which has been inserted at the end of the report 
due to its size. 
 
Experimental Data Analysis: The acoustic data that were collected during the experiments are 
currently being processed. The processing stream is as follows: The signals are identified in the 
recordings made by each hydrophone using the known time that signals were transmitted and 
correcting for the drift rate of the ship. After each signal has been detected, a four second segment of 
the signal is extracted with the detection located approximately in the centre of the segment. Each 
extracted detection is saved to a WAV file and high-pass filtered to remove the DC-offset applied by 
the recording equipment. At this point, the received signals are able to be input to the aural 
classification algorithm. 
 
 

 
 

Figure 1: Representation of the experimental setup. The ship first deployed two hydrophone 
moorings, moved to the first location and transmitted the set of signals, then moved further away 
from the recorders and retransmitted the signals. R1 and R2 represent the horizontal range the 

signals propagated from the source to the midpoint between the moorings. 
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Figure 2: Sound speed profile measured during the propagation experiment that was used in 
OASES-OASP modeling. 

 
The 58 perceptual features are calculated for each signal transmitted during the experiments and the 
signals received on each of the deployed hydrophones. An initial assessment of the classifier 
performance is accomplished by training the classifier on data recorded by a monitor hydrophone that 
was deployed from QUEST during the experiments, and testing on data transmitted through the water.  
Classification tasks are divided so that the real and synthetic whale calls will be considered separately. 
 

Table II: The five features that best discriminate between example bowhead and  
humpback whale calls. 

 
Feature Description 
Duration    
Global mean subband decay time 
 
Local maximum subband decay time 
 
 
Frequency of global maximum subband 
attack time 
 
Peak loudness value 
 

Time delay between the start and end of the signal 
Average time delay between the peak of the temporal envelope 
and the end of the signal 
Maximum time delay between the peak of the temporal 
envelope and end of the signal; each subband considered 
individually 
The center frequency of the filter bank channel which contains 
the maximum subband attack time (i.e., the time delay between 
the start of the signal and the peak of the temporal envelope) 
Maximum value of the perceptual loudness spectrum. 
 

 
The classifier is first trained using the five features that best discriminated between example bowhead 
and humpback vocalizations (refer to Table II). Examining and comparing the decision regions for 
signals transmitted over each of the ranges will allow qualitative analysis of the classifier’s robustness. 
Quantitative analysis will consist of comparing the accuracies and area under the ROC curve AUCs, as 
well as the class means and variances. If propagation affects the perceptual features used for 



6 

classification, then one would expect that the class means of the propagated signals in the training and 
testing sets would be significantly different, and/or there would be a large change in the variance of the 
classes. This will likely result in a decrease in the AUC and/or the classification accuracy. This type of 
analysis will be repeated allowing the classifier-algorithm freedom to select the best perceptual 
features to train the classifier. 
 
RESULTS 
 
Preliminary results from the aural classifier are presented in Figure 3 as performance matrices.  These 
data are for the synthetic vocalizations and were collected with a hydrophone deployed at 29 m depth.  
The 0 km range refers to the original signals (real and synthetic) after up-sampling, but not subject to 
the signal conditioning designed to flatten the TVR curve of the transducer, nor transmitted into the 
water; the 70 m range refers to signals which were recorded on the monitor hydrophone deployed from 
QUEST’s well deck.  Each element in these performance matrices represents the mean performance, 
obtained using 5-fold cross-validation, of the classifier using the five features that best discriminated 
between the real bowhead and humpback vocalizations. For example, the square in the fifth column 
and third row of the left hand panel of Figure 3 represents a mean AUC = 0.95 determined by training 
the aural classifier on signals transmitted over 10 km and then validating (or testing) the classifier on 
data transmitted over 1 km. 

 

  
 

Figure 3: Aural classifier performance matrices generated from the sea trial data. These represent 
classification performance in terms of AUC (lhs) and classification accuracy (rhs) for all 
combinations of training the classifier on signals transmitted x km and testing on signals 

transmitted y km. 
 
These preliminary results from the propagation experiments suggest that there is a range-dependent 
component to the classifier performance. The classifier performance for all training/testing pairs that 
included data transmitted over 20 km was little better than chance — likely because the SNR of the 
received signals was so low that when these ‘detections’ were listened to, no signal could be discerned 
from the ambient noise. Also of note is that the elements above the main diagonal are darker (i.e., 
represent better performance) than those below the main diagonal. A similar pattern was noted in the 
SNR-dependence investigation of Murphy and Hines [7], suggesting that SNR may, at least in part, be 
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driving the decrease in classifier performance. Mouy et al. [14] also noted that false negative rates 
increased as SNR decreased.  Further work is required to determine if the performance degradation 
noted here is a result of complex propagation effects or a decrease in SNR as signals propagate over 
longer ranges. 
 
The OASES-OASP model was run for geometries and environmental parameters consistent with the 
Gulf of Mexico sea trial reported on in [6]. The environment was modeled as a horizontally stratified 
water column overlaying a sediment half-space. The geoacoustic parameters of the sediment half-space 
(listed in Table III) were selected to be consistent with the silty-clay sediment type observed at the 
experimental site. The sound speed profile shown in Figure 2 was measured with a CTD during the 
experiment and was used to model the water column characteristics. The following results considered 
only the propagation of the synthetic signals with the source and receiver located at depths of 30 m and 
36 m, respectively. 
 

 
 

Figure 4: Aural classifications results for synthetic whale calls propagated through the  
OASES model over 0–20 km ranges. Data points have been binned into histograms after  
being projected onto the horizontal axis. The decision threshold (represented by the line  

separating blue and pink backgrounds) was determined by training the classifier on  
signals ‘propagated’ through the modeled environment over 0 km, then the classifier was  

validated on signals propagated over 5, 10, and 20 km ranges. 
 
Figure 4 shows results obtained by training the classifier on synthetic signals propagated with OASES- 
OASP over a range of 0 km. The 0 km range is obtained by placing a receiver at the same range step as 
the source to capture any processing effects of the model. This plot shows histograms of projected 
feature values that were determined by performing linear discriminant analysis with the five features 
that best discriminated between the example bowhead and humpback vocalizations (same features as 
used in Table II). Correct classification is represented by a colored histogram bin plotted on the 
background of the same color (e.g., dark blue on light blue). Histograms of all training and validation 
results are plotted in the same figure. The classifier was able to discriminate between the signal types 
with 100% accuracy and an AUC = 1.00 for all propagation ranges. From these results it is clear that 
the class distributions for both the bowhead and humpback synthetic signals are not significantly 
changed by propagation effects (as a function of range). It should be kept in mind that these results 
provide a preliminary look at how propagation impacts the five features incorporated in the 
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discriminant analysis.  At this point the model only produces simplified propagation conditions.  In 
order to make more general statements about the results, additional work needs to be done to ensure 
that the pulse propagation model is sufficiently representative of true propagation conditions. 
 

Table III: Geoacoustic parameters used to model the sediment half-space. These parameters were 
selected to be consistent with the silty-clay sediment observed during the Gulf of Mexico experiment. 

 
Parameter Value 
Bottom depth, H 72 m 
Density,  1.77 g/cm3 

Compressional sound speed, cp 1 646 m/s 
Shear sound speed, cs 400 m/s 
Compressional attenuation, αp 0.8 dB/λ 
Shear attenuation, αs 2.5 dB/λ 

 
 
IMPACT/APPLICATIONS 
 
Detection and classification of cetaceans has become critically important to the US Navy due to an 
ever increasing requirement for environmental stewardship.  Passive acoustics continues to be the best 
method to carry out this task but current techniques provide only a partial solution; most detectors are 
either too general, leading to unacceptably high false alarm rates, or are too specialized (i.e., species- 
or location-specific) leading to many missed detections. Furthermore, future military platforms will 
have to support smaller complements and deal with ever-increasing data throughput, so that 
automation of on-board systems is essential.  In addition, the technique is well suited to autonomous 
systems since a much smaller bandwidth is needed to transmit a classification result than to transmit 
raw acoustic data. The success of the machine classifier in discriminating cetacean vocalizations 
suggests that it could be applied to other passive acoustic classification problems which currently 
employ human audition.  This would be particularly useful if expert listeners aren’t available –such as 
diagnosing heart murmurs in remote communities that lack a cardiologist, or as part of the triage 
process in a hospital emergency department.  Alternatively, the machine classifier is ideally suited 
when the sheer volume of data makes human audition untenable – such as classifying ocean acoustic 
data for species population monitoring.  Finally, developing a robust classifier for passive marine 
mammal vocalizations is also a first step to testing the algorithm on passive transients generated by 
submarines to examine its potential for passive detection and classification of submarines. 
 
RELATED PROJECTS 
 
This research will benefit from DRDC Atlantic’s Force ASW Program in which DRDC’s aural 
classification algorithms (including the marine mammal classification algorithm) is being integrated 
into DRDC’s System Test Bed (STB).  The STB is used to evaluate sonar algorithms in a military 
context.  Some of the insights to be gained will be: whether the aural classifier can reduce false alarms 
from marine mammals; does the classifier reduce operator workload required by environmental 
considerations (the so-called green navy) to enable greater concentration on potential targets; is the 
aural classifier easily integrated into a navy platform? 
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Table I: Summary of the main considerations when selecting a numerical technique for ocean acoustic pulse propagation modeling.  
The division between low and high frequencies is set at 500 Hz, following Etter [9]; he selected this threshold somewhat arbitrarily 
but it does reflect that above 500 Hz some techniques become computationally intensive, and below it the physics of ray-tracing may 
be ‘questionable.’  The shallow water regime includes all water depths for which the sound significantly interacts with the bottom 
boundary.  The column titled ‘Pulse propagation’ considers numerical techniques that are known to have already implemented a 

pulse propagation capability.  The column labeled ‘non-proprietary’ considers whether there is an available model implementation 
that is well-established, as well as freely-available. Only a single example implementation is given in this table, although many other 

implementations exist.  The examples listed here are well-known in the ocean acoustics research community.  From this table it is 
evident that each numerical technique has many benefits – the primary motivators for selecting wavenumber integration were the 
frequency range and the availability of a non-proprietary model with pulse propagation implemented.  Note that no explicitly time-

domain models were considered in the review since according to [2], most problems of practical importance in underwater acoustics 
(long-range propagation of pulses of ‘finite’ bandwidth) favor the Fourier synthesis technique. 

 
 

Parameter Frequency 
Range 

Suitable for 
shallow water 

Suitable 
spatial scale 

Range-dependent Pulse 
propagation 

Non-
proprietary 

Example 

Ray-tracing high yes* yes fully yes yes BELLHOP 

Normal mode low to few 
kHz 

yes yes with 
approximations† 

unknown yes KRAKEN 

PE low yes yes fully unknown yes RAM 

Wavenumber 
integration 

low to few 
kHz 

yes yes with 
approximations† 

yes yes OASES 

 
*  Given a sufficiently high frequency signal. 
† I.e., range-dependence can be implemented using a suitable approximation – either coupled-modes or adiabatic approximation. 


