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LONG-TERM GOALS 
 
The long term goal of the 3S international cooperative research program is to investigate behavioral 
reactions of cetaceans to naval sonar and various control sounds, and the sound exposures required to 
elicit responses, in order to establish safety limits for sonar operations.  3S project efforts have been 
focused upon informing the ‘exposure-effect assessment’ component of a full risk-asssessment 
framework (Fig. 1), which has been identified as a crucial missing component of the risk-assessment 
need (Boyd et al., 2008).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 1.  A risk-assessment framework.  To characterize risk, both assessment of the amount of 
exposure in the environment and and assessment of the relationship between exposure and effect 

(circled) are required. 
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A significant challenge to establishing safety limits for sonar operations in in specifying what types of 
‘effects’ need to be considered in the exposure-effect assessment.  Under the US Marine Mammal 
Protection Act, both direct harm and harrassment of marine mammals is regulated, so effects of 
concern cover a wide span of possible effects.  Under new guidelines specified in the European Marine 
Strategy Directive, nations are required to specify ‘healthy state of the marine environment’, which 
could potentially include evaluation of a large array of potential effects from underwater noise 
emmissions.  Considerable recent focus has been shifted to understanding how behavioral effects 
might have longer-term consequences for individuals and populations of cetaceans (NRC, 2005).  
Modelling efforts under the PCAD working group have demonstrated the potential for behavioral 
effects to influence vital rates via energy balances (New et al., 2013).  Behavioral effects of noise 
exposure may be shaped by anti-predator adaptations (Frid & Dill, 2002), and it is likely that natural 
selection will have operated substantially on the behavioral choices that underlie reactions to 
anthropogenic noise.  The proposed research is therefore relevant to the US Navy to advance research 
in the area of determining  ways of assessing ‘effects’ that have the specific potential to influence life 
history traits, and could therefore be considered harassment under the Marine Mammal Protection Act. 
 
OBJECTIVES 
 
The specific objectives of this project are: 1.) use of state-classification modelling (e.g. hidden Markov 
models, state-space modelling) to assess how sonar exposure might affect functional behavioral time 
budgets across 3S species;  2.) quantitative comparison of behavior, and behavioral changes, during 
sonar presentation and playback of killer whale sounds across the 3S species; and 3.) quantification of 
the possible impacts of sonar exposure on energy expenditure via linkage of respiration behavior and 
underwater activity recorded by Dtags.   
 
APPROACH 
 
The analyses in this study will take advantage of baseline data available for each target species, as well 
as the full range of experimental exposures conducted, including silent approaches as negative control 
and killer whale playback as positive control stimuli (Table 1). 
 

Table 1.  The 3S data-set collected to date. 
 

 
Species 

# 
tagged 

# with 
CEE 

# of sonar 
exposures 

# of silent 
controls 

# of KW 
playbacks 

Killer whale  (O. orca) 10 4 8 1 2  
LF pilot whale (G. melas) 30 8 14 4 8 
Sperm whale (P. Macrocephalus) 10 4 10 2 5 
Humpback whale (M. novaeangliae) 28 11 20 11 8 
Minke whale (B. acutorostrata) 1 1 1 1 0 
N bottlenose whale (H. ampullatus) 6 1 1 0 0 
TOTAL 80 29 54 19 23 

 
Technical approach for objective 1:  Behavioral state modeling to derive time budgets 
The goal of this task is to classify behavioral time series into functional behavioral states, enabling 
quantification of time budgets and proxies for costs and benefits of behavior within each functional 
state.  Internal and external drivers of behavior may be combined by considering behavioral time series 
to arise from discrete functional units (‘functional states’) that are associated with the fulfillment of a 
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particular proximate or ultimate goal or set of goals based on a priori hypotheses (Nathan et al., 2008). 
States may be classified directly from data (‘behavioral state’), such as area-restricted search, or refer 
to an underlying motivation that drives observed behavior (‘motivational state’, Bindra, 1978), such as 
hunger level. With advances in statistical computing, there is increasing scope to estimate these states 
within more realistic hidden process models that distinguish the observation and underlying (‘hidden’) 
process explicitly (Patterson et al., 2008; Schick et al., 2008) and integrate multivariate and multi-scale 
descriptors of behavior (McClintock et al., 2013). A realistic approach is to allow behavioral states to 
vary over time (state-switching). 
 
The framework we will apply will include analysis of a broad suite of recorded behaviors, and 
specifies the use of functional ‘currencies’ (e.g. feeding rates, locomotion costs) in conjunction with 
state-modelling to measure benefits and costs associated with a functional state (Fig. 1; Isojunno & 
Miller, in press). If functional currencies can be estimated given a state, fitness consequences can be 
evaluated with or without evidence of a specific behavioral response. This ‘functional state approach’ 
helps to frame the cross-disciplinary links between the motivating currency, proximate constraints and 
ultimate consequences of behavior, and encourages the view that behavioral context is a signal that 
could potentially fill in knowledge and data gaps of individual-based approaches to population 
consequence, rather than noise adding unexplained complexity to behavioral records.  
 
The statistical analysis methodology for this objective will utilize state modelling (hidden or non-
hidden) to quantitatively classify behavior into functional states determined for 3S study species 
(Jonsen et al., 2013).  The time-series of functional behavioral state, and the quantitative indicators of 
benefits and costs within the state (feeding indicators, energy expenditure, social investment), are then 
used to test for systematic variations across different exposure conditions (tagging periods, baseline 
data periods, sonar-exposure sessions, killer-whale playbacks).  
 
We will make use of this approach to quantitatively evaluate the effects of sonar exposure and killer 
whale playback of 3S species, starting with the long-finned pilot and humpback whale data sets.  
Currencies of cost/benefit are fairly easy to measure with these species.  Cost can be quantified using 
ODBA or from breathing patterns (Objective 3). Benefits can be scored using deep dive buzzes and 
lunges as indicators of feeding in long-finned pilot and humpback whales, respectively. The primary 
challenge in applying the method to these other species is to successfully establish the functional 
behavior states employed by these species.  The highly social nature of long-finned pilot whales may 
justify classification of states at both the group and individual level (Figure 6).  Quantitative metrics of 
production of social sounds by this species (Objective 2), will aid in classifying group behavioral state, 
and may also serve as a benefit currency for this social species. 
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Figure 2. A framework for context-dependent behavior, inspired by Nathan et al. (2008). This 
‘functional state approach’ consists of the focal individual, its biotic and abiotic environment 

(external factors), and their interface (cost-benefit space). Cost-benefit space is the outcome of 
behavioral options available to an individual, such as a trade-off between foraging and predation 
risk. Behavioral options are associated with a set of proximate goals or ultimate motivations (e.g. 

food, information). These options are limited physically and physiologically (accessible space) 
through individual history (ontogeny), current physical status (reproductive state, body condition 
and homeostasis) and physical barriers. Cost-benefit assessment reflects the individual’s internal 
mechanism for assessing a behavioral option. Information status encompasses cues, information 

and memory from both sensory and non-sensory inputs in the somatic nervous system. Functional 
state is the realized behavioral option exhibited by the animal and gives rise to a collection of 

behavioral traits that lead to a cost-benefit outcome. Currencies are the measures of the cost-benefit 
outcome of the functional state and feed back to the internal state of the individual, with effects on 
subsequent behavioral options, functional states and fitness (from: Isojunno & Miller, in press). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Initial schematic of nested social and individual state classification structure for long-
finned pilot whales using social indicators on the group level , and tag data on the individual level. 
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Technical approach for objective 2:  Contrasting response to sonar exposures and predator playbacks: 
In this task, additional data and statistical analyses will be conducted to explicitly contrast the behavior 
of whale subjects in the 3S dataset during sonar exposure and playback of killer whale sounds, with the 
goal to evaluate the risk-disturbance hypothesis (Frid & Dill, 2002).  Focused analysis of behavior 
changes following playback of killer whale sounds to sperm (Curé et al., 2013) and long-finned pilot 
whale (Curé et al., 2012) have been published, and response of humpback whales to killer whale 
playback is part of the current 3S2 work plan (see Related Projects). While separate analyses of 
responses to killer whale playback and sonar exposure (Miller et al., 2012) provide a qualitative basis 
for contrasting behavioral changes during acoustic exposures, here we propose a targeted statistical 
contrast of both the intensity and direction of behavioral effects of these exposure types. 
 
The statistical aspects of this task will be accomplished using the functional-state modeling approach 
of Task 1.  Work under this task also will benefit from additional scoring of Dtag audio recordings to 
create quantitative indicators of social sound production by the 3S target species.   
 
Technical approach for objective 3:  Quantifying potential energetic impacts of sonar exposure: 
The goal of this task is to evaluate possible energetic-expenditure changes due to sonar exposure, 
based upon linkages of underwater activity and breathing events recorded by Dtag sensors.  We will 
use the fine-scale kinematic data recorded by Dtag to evaluate energetics and related breathing patterns 
in 3S study species.  The aim will be to analyze: 1) the strength of correlations between respiration 
rates and underwater activity levels (Williams et al., 2004; Williams and Noren, 2009); 2) to what 
extent respiration timing (in addition to rate) alters the predicted oxygen taken up by each breath and 
therefore creates a more accurate predictor of metabolic requirements; and 3) the impact of disturbance 
from naval sonar transmissions or playback of killer whales sounds on energetic requirements.  
Energetic requirements might increase due to behavioral changes such as increased swimming speed 
associated with avoidance (Miller et al., 2012).  This analysis will enable direct energy expenditure 
contrasts by exposure condition, and will also provide useful methods to quantify the ‘cost’ component 
of behavior within different functional states (Task 1).   
 
The framework for this analysis will be to build a time-series model of the predicted, ongoing oxygen 
store carried by each study animal:   
 

O2 store n+1 = O2 store n – O2 costs n + O2 uptake n    (Eq. 1) 
 
where, O2 storen+1 and O2 storen are the total amount of O2 in the body (including lungs, blood and 
muscle stores) at each time step.  O2 costsn is the O2 utilized for metabolic activity, and O2 uptaken is 
the O2 acquired through breathing for each time step.  O2 costsn will be modeled using estimates of 
basal metabolic rate plus predicted or empirical relationships derived from underwater activity metrics 
(Williams et al., 2004).  Activity metrics will include speed (calculated through kinematic 
measurements and analyses of flow noise; Simon et al., 2012), thrusting movements or acceleration 
(ODBA, calculated by kinematic measurements; Wilson et al., 2006), and fluke stroke rate relating to 
thrusting movements (Goldbogen et al., 2006). 
 
Respiration times will be extracted from time-depth records via surfacing cues, following published 
methods (Miller et al., 2010).  The amount of oxygen acquired for each breath can be quantified as:  
 

O2 uptake breath = VT (IO2 – XO2),     (Eq. 2) 
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where VT is tidal lung volume or amount of liters air exchanged per breath (L breath-1) [12], IO2 is the 
O2 proportion of inhaled air, and XO2 is the O2 proportion of exhaled air.   
 
A key advance in our proposed work is that O2 exchanged per breath will vary based upon the modeled 
oxygen store, rather than a constant amount per breath assumed when breathing rate alone is used 
(Williams & Noren, 2009).  It is well known that gas exchange in the lung will depend upon the 
relative partial pressures of the gas in the lung and the time available for the exchange to take place 
(Schmidt-Nielsen, 1997).  While data for oxygen uptake is not known for killer whales, it is possible to 
model this process (e.g. Wilson et al., 2003; Fahlman et al., 2006). 
 
Thus, the energetic-expenditure analysis will consist of two components: 1.) the estimate of O2 use 
based upon basal metabolic rates and activity level, and 2.) the estimate of O2 uptake per breath based 
upon breathing times and the current estimated oxygen score.  Because this model accounts for 
underwater activity and variable oxygen uptake per breath, it is expected to be a more accurate 
representation of the metabolic rate than breathing rate alone.  As actual metabolic rate was not 
measured directly during 3S experiments, a full external validation of the approach is not possible.  
Instead, we will validate the model by correlating predicted oxygen usage with activity levels.   
 
WORK COMPLETED 
 
Work under this project started on 01 July, 2014.  Staff positions for the project have been filled, and 
work has begun on initial stages of the ‘functional state’ modelling approach (Objective 1), 
coordinating with the MOCHA project team (see Related Projects).  The required acoustic analyses of 
tag recordings has begun (Objective 2), with an initial focus on the acoustic behaviour of long-finned 
pilot whales recorded during killer whale playbacks conducted in 2013 and 2014.   
 
Graduate student M. Roos has implemented an initial version of the metabolic rate analysis from 
breathing times of killer whales (Objective 3).   Roos presented her results in the 2014 Effects of 
Sound on Marine Mammals conference in Amsterdam and the 2014 Biologging Symposium in 
Strasbourgh.   
 
RESULTS 
 
For objective 3, graduate student M. Roos has made use of existing respiratory parameters for the killer 
whale (e.g. Kriete, 1995), to make an initial analysis of 3S killer whale Dtag data.  In this initial 
oxygen model, oxygen use by the animal was calculated as basal metabolic rate plus a simple cost per 
fluke stroke performed by the tagged whale.  Oxygen uptake per breath was modelled as a function of 
oxygen store at the time of each breath (Fig. 4). 
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Figure 4.  Data segment from tagged killer whale oo09_144a.  Top: dive profile with fluking activity 

encoded as color.  Middle: predicted O2 store time series.  Note that O2 consumption tracks the 
activity level, while O2 uptake at each breath varies with the O2 store at the time of each breath. 

 
Evaluations using this model across 12 tagged killer whales indicate much stronger correlations of 
activity and O2 usage from our uptake modeling approach than breathing rate alone.  Correlations of 
fluke stroke number versus oxygen uptake over 15 minute intervals for breathing rate were weak (r2 
ranged from 0.034-0.66), while much stronger relationships were found using the oxygen uptake 
model in which O2 uptake varies by breath (r2 ranged from 0.89-0.98; see example in Fig. 5).   
 
Applying these new estimates of metabolic rate (O2 use) to a sonar exposure experiment (Fig. 5) 
greatly improves our ability to robustly estimate metabolic rate changes due to increased activity 
associated with behavioral response (Miller et al., 2012).   During the 15-min period of greatest 
activity for whale subject oo09_144b, breathing rate alone did not increase (Fig. 5, left panel).  
However, use of the model allowing O2 uptake per breath to vary by oxygen store (Fig. 5, right panel 
inset box) indicated a greater metabolic rate during that period of high activity (arrow in Fig. 5, right 
panel).   This strong difference arose because the animal strongly changed the timing of its breaths, 
with substantially longer inter-breath intervals during the high-activity period.  Higher uptake of O2 per 
breath is expected after longer apnea periods, a factor which is ignore when using breathing rate alone, 
but which is effectively captured by use of the O2 uptake model. 
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Figure 5.  Scatter plot of the fluking rate versus oxygen uptake using breathing rate (left panel), and 

the full O2 uptake model (right panel) for tagged whale oo09_144b.  The O2 uptake curve used in 
the oxygen model illustrated here is shown in the right panel inset box.  Symbol colors indicate the 
phase of the sonar experiment for each 15-min interval.   The arrows on the two panels indicate the 
identical 15 min period with high activity levels during an avoidance response by the tagged whale.  
Note much stronger correlations resulting from use of the uptake model which allows O2 uptake to 

vary depending upon the O2 store (right panel, inset box). 
 
RELATED PROJECTS 
 
This study is the third phase of the project “Cetaceans and naval sonar: behavioral response as a 
function of sonar frequency” award number N00014-08-1-0984, which expired in 2011.  The second 
phase of the 3S project is “3S2: Behavioral response studies of cetaceans to navy sonar signals in 
Norwegian waters” which remains an ongoing project.  Statistical support and collaboration is ongoing 
with the MOCHA project award N00014-12-1-0204.  Collaborative research is pursued with Kelp 
Marine PI Fleur Visser under award N00014-11-1-0298.  Additional support for this project is 
provided by French Ministry of Defence. 
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