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LONG-TERM GOALS 
 
For an N-element array (Fig.1(a)), methods such as beamforming and singular value decomposition 
rely on estimation of the sample covariance matrix, computed from M independent data snapshots. As 

∞→M , the sample covariance is a consistent estimator of the true population covariance. However, 
this ideal condition cannot be met in most practical situations,1-2 in which large-aperture arrays operate 
in the presence of fast maneuvering interferers, or with towed/drifting arrays strongly affected by 
deformation or array-depth perturbations. The long-term goal of this effort is the development of 
physically motivated models to statistically describe the eigenstructure (eigenvalues and eigenvectors) 
of sample covariance matrices in sample-starved settings, and the use of those models for performance 
analysis and improvement of array processing methods. To this end, mathematical tools developed in 
the context of Random Matrix Theory (RMT)3-6 (mostly focused in the regime N~M) and High 
Dimension, Low Sample Size (HDLSS) array processing7-8 (which considers N>>M) are applied to 
obtain statistical descriptions of sample eigenvalues/eigenvectors and how those quantities differ from 
the (true) population eigenpairs. Additional long-term goals are exploiting the information carried by 
sample eigenvectors for the improvement of estimators of the sample covariance matrix (i.e., signal 
versus noise subspaces), and for quantifying local stationary in array data (Fig.1 (b)).  
 
OBJECTIVES 
 
• Developing beamforming techniques for snapshot-deficient scenarios with moving targets such as 

the one illustrated in Fig.1. Unlike previous research, this work incorporates asymptotic results3-8 
for the sample eigenvectors and how they deviate from their true population eigenvectors.  

• Developing multi-hypothesis tests for estimation of parameters such as azimuth and power of 
targets in the watercolumn, number of targets, and their speed, based on asymptotic limits for the 
sample eigenvalues, sample eigenvectors, and eigenspace projections for N>>M. A key 
component of this research is the analysis of the impact of source movement (i.e., time-dependent 
position) on the eigenspaces associated to signal and background noise.  
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Figure 1 (a) Experimental scenario considered in this research,9 consisting of multiple maneuvering 

sources detected by an N-element array after collecting M snapshots. This work considers array 
processing tools for cases in which N>>M. (b) Data snapshots are collected at discrete times ta, ta+1, 
etc. Data local stationarity occurs at time intervals of little or no variation of target azimuth (e.g., 

ta<t<ta+2 and tb<t<tb+3). 
 

• Developing statistical methods for data segmentation into intervals with local stationarity9-10 as 
shown in Fig. 1(b), capable of distinguishing between true variations in the covariance structure 
(due to underlying time-varying statistics), as opposed to variations introduced by the lack of data 
snapshots. Since estimation of the sample covariance matrix assumes local stationarity of the data, 
this segmentation approach will provide a bound for the largest number of snapshots to be 
included while estimating covariances.  

• Obtaining an eigenvector-based estimator of the signal subspace11 to improve the performance of 
subspace array processing methods. In previous ONR-sponsored work, determining the signal 
subspace has been carried out by defining eigenvalue-based rank estimators.5 In contrast, the 
work presented here considers the benefits of including the information carried by sample 
eigenvectors. 

 
APPROACH 
 
1) Defining a snapshot model:1 Let  
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be a data snapshot at time tm at an N-element array, where mw  is the Nx1 vector corresponding to the 

background noise of power level 2
wσ ,  qmγ  is a complex zero-mean Gaussian distributed random 

variable with variance 2
qσ representing the source level of the qth target in the watercolumn (see 

Fig.1(a)), and qmv  is the azimuth-dependent replica vector for the qth target, defined as 
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where ω  is the frequency in radians/s, d is the array inter-element spacing, and oc is the water sound 
speed. The population covariance at time ta is 
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Using eq.(3), data realizations (i.e., M snapshots) can be generated from complex normally distributed 
vectors z as zRx 2/1

am = . The simulated data obtained by this approach is used to study the behavior of 
the sample covariance matrix, estimated as:1-2 
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−++== xxxXXXR                                   (4). 

From eq. (3), the relative impact of Q̂ , Q~ , 22 / wq σσ , N , and M on the behavior of sample eigenvalues 

( Nll ˆˆ
1 ) and sample eigenvectors ( Nuu ˆˆ 1 ) will be analyzed by Monte Carlo studies and contrasted 

to predictions from RMT3-6 and HDLSS. 7-8 
2) Quantifying eigenspace dynamics:9-10,11 eigenspaces are defined as the vector space spanned by 
Q~  eigenvectors. Signal stationarity can be quantified by tracking time-dependent variations in the 
eigenspace defined by target-related population eigenvectors, as illustrated in Fig. 2. In this example 
the decision of data stationarity is based on whether the population eigenvectors have changed 
direction over time (i.e., ba 11 uu = and ba 22 uu = ) or not. Since population eigenvectors are not 
observable variables, an eigenspace distance based on sample eigenvectors is defined as:9-10  
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which has bounds 10 ≤≤ abr since the trace operator is bounded between 0 and 1. 0=abr occurs when 
the eigenspaces at times ta and tb are perfectly lined up indicating data stationarity. On the other hand, 

1=abr  results when such eigenspaces are orthogonal to each other, indicating data non-stationarity. A 
statistical decision rule for data stationarity can be stated as the complementary hypothesis 
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where the stationarity bounds rrL σµ ±=± are a function of the theoretical mean ( rµ ) and standard 
deviation ( rσ ) of abr . Based on theoretical results from HDLSS8-9 it is possible to obtain theoretical 
expressions for these quantities on the assumption of data stationarity (hypothesis 0H ).  
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Figure 2 Illustration of the data stationarity test proposed in this work,9-10 which consists on 
tracking variations in the direction of population eigenvectors at times ta and tb. Since population 

eigenvectors are not observable quantities, eigenspace variability can be tracked using the 
eigenspace distance metric in eq.(5), based on observable sample eigenvectors. 

 
3) Obtaining an eigenvector-based estimator for signal and noise subspaces:10 Subspace 
beamforming techniques rely on projecting noisy data snapshots into reduced rank signal eigenspaces. 
In this work, we consider the statistic properties of entirely random eigenspaces to identify specific 
eigenvectors with signal-bearing information. To explain this concept, consider the following Monte 
Carlo experiment illustrated in Fig. 3: given an N-dimensional sphere, randomly select K vectors and 
measure the angle α  between these vectors and an arbitrary reference vector (shown in red). It can be 
shown10,12-14 that for random vectors (i.e., vectors with no information content), the angle 

),...,min( 1min Kααα =  has a probability distribution function10 
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This concept can be extended to K eigenvectors estimated from data snapshots collected at an N-sensor 
array: sample eigenvectors corresponding to noise-only data exhibit the same statistics as eq.(7), while 
signal-bearing eigenvectors result into left-skewed distributions, as illustrated in Fig. 3. Therefore, 
eigenvectors with minα lower than a user-defined threshold should be considered as potentially 
“informative”. In this work, we propose an algorithm described below that utilized this criteria for 
estimation of the signal subspace prior to beamforming.  
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Figure 3 Example of the approach proposed in this work to identify signal-bearing vectors:10 the 
minimum angle between a set of K=3 noise-only N-dimensional vectors and a reference vector (red) 
exhibits different behavior than the angle resulting from signal-bearing vectors (i.e., those vectors 

with structure that resemble the reference). In this research, this concept is extended to sample 
eigenvectors as a tool to estimate the signal subspace, as well as its complementary noise subspace. 

 
WORK COMPLETED 
 
1)  An eigenvector-based metric to quantify data stationarity9 (based on the concept illustrated in 

Fig.2) was proposed for an experimental scenario consisting of a single dominant interferer and 
multiple quiet targets of interest. A generalization of this approach to the case of Q~ dominant 
interferers has also been proposed10 and the theoretical results have been applied to improving a 
reduced rank beamformer and applied to simulated and experimental data.  

 
2)  A sample eigenvector-based estimator for the signal subspace has been proposed10 based on the 

idea illustrated in Fig. 3. Beamforming results with simulated data illustrate application of this 
theoretical result to improve target detection in snapshot-starved scenarios. 

Examples of results corresponding to applications #1 and #2 are shown in the next section. 
 
RESULTS 
 
The array processing techniques developed in this research have application to the improvement of 
subspace beamforming processors, in which the data snapshots are projected into particular subspaces 
of interest such as 

mm xPy (.)(.) =  ,        (8) 
where (.)P is a subspace projection operator obtained from sample or population eigenvectors, defined 
in Table 1 for several cases of study.  
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Table 1: Definition of three data projectors (.)P and adaptive beamforming weight vectors )((.) qw  
used in this report for comparison of array processing techniques. 
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Once the adaptive weights have been obtained (see Table 1), beamforming results have the form 
 

( ) )(ˆ)()( (.)(.)(.) qqq wRw Ma
H

MaBF =  .                  (9) 
 

This report discusses two beamforming approaches that exploit either data stationarity or signal 
information content in sample eigenvectors: 
 
1) Stationarity-aided beamforming:9-10 Application of the stationarity metric in eq.(5) for 
improvement on the estimation of adaptive beamforming weights is demonstrated in this section with 
simulated and experimental data. The simulated setting allows to compare the benchmark beamformer 

)(true
MaBF to )( MM

Ma
oBF = , which is the traditional MVDR adaptive beamformer with white noise gain 

constraint. This is also contrasted to )( MM
Ma

oBF ≥ in which oM  is determined according to the data 
stationarity criterion in eq.(6). The simulated example consists of two loud interferers (20 dB and 25 
dB) and four quiet sources with powers ranging between 2 dB and 5 dB above the noise level of 0 dB. 
Figure 3 (a) shows target azimuths as a function of time. The data stationarity criterion in Fig.3(b) is 
dominated by the loud interferers, so 2~

=Q in eq.(5). This is evident for 0<t<130 s, for which both 
interferers have constant azimuth, resulting in a large interval of data stationarity. Another interesting 
feature is observed around 450 s, where both interferers are undistinguishable as a result of being 
located at the same azimuth. In this case, 1~

=Q  and eq.(5) predicts accurately a sharp drop of the 
stationarity metric. Figure 3(c) shows the benchmark beamformer )(true

MaBF , in which all targets can be 
clearly visualized. Figure 3(d) shows )( MM

Ma
oBF = , obtained by estimating the adaptive weights using 

M=10 snapshots at each time. Compared to panel (c), noise levels are higher and target angular 
resolution is lower. Figure 3(e) shows the improved results obtained by estimating beamforming 
weights using 10≥oM snapshots according to the data stationarity bounds in Fig.3 (b). The results 
resemble those in panel (c), with similar background noise level and angular resolution.  
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Figure 3 Example of eigenspace stationarity in simulated data:10 (a) Time-dependent azimuth of six 
maneuvering targets (red=loud sources); (b) Stationarity metric abr  (solid black line) compared to 

theoretical bounds (dark grey box). Horizontal boxes indicates segments of data deemed as 
stationary according to the criterion in eq.(6); (c) )(true

MaBF (d) )( MM
Ma

oBF =  with 10=oM  snapshots; 
(e) )( MM

Ma
oBF ≥ , with 10≥oM snapshots according to the stationarity segments in (b).  

 
The stationarity-aided beamforming approach was also applied to experimental data from the CalOps 
portion of the Shallow Water Array Performance (SWAP) experiment.14 Although a towed active 
source was utilized during CalOps experiment,14 analysis of the full data set is still ongoing and in this 
report we only consider data segments with sources of opportunity (shipping traffic). Beamforming 
results for data collected on September 7th, 2007 are shown in Fig. 4. The data was collected on a 100-
sensor horizontal line sub-array, for a total 175 m aperture. Figure 4(a) shows the application of the 
stationarity metric to the dominant time-varying eigenspace. Similar to the previous simulated 
example, abr  exhibits variability due to the lack of snapshots used to compute the eigenspaces at each 
time, as well as due to true variations in the underlying data statistics from surface ship movement. 
Figure 4 (b) shows )( MM

Ma
oBF =  for 5=oM snapshots, allowing the detection of multiple targets in the 

watercolumn. Improved results )( MM
Ma

oBF ≥  are shown Fig.4(c), which exhibit reduced background noise 
levels and better detection capabilities of quiet targets than panel (b).  
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Figure 4 Eigenspace stationarity10 applied to experimental data from the SWAP experiment.14 The 
data was collected at a 100-sensor horizontal line sub-array, at 415 Hz.  (a) Stationarity metric abr  

(solid black line) compared to theoretical bounds (dark grey box). Horizontal boxes indicates 
segments of data deemed as stationary; (b) )( MM

Ma
oBF =  with 5=oM  snapshots; (c) )( MM

Ma
oBF ≥ , with 

5≥oM snapshots according to the stationarity segments in (a).  

 
2) Eigenvector-based beamforming (EVB):10 as illustrated in Fig.3, eigenvectors with information 
content related to targets in the watercolumn exhibit different statistical properties to those related to 
background noise. In this research we propose an eight-step algorithm that exploits this information 
content to estimate the signal subspace for data projection prior to beamforming: 
 
Estimating the eigenbasis ku required for the proposed EVB beamformer: 
Step 1: Given M data snapshots, compute the sample eigenvectors Muu ˆ,...,ˆ 1 . 
Step 2: Compute the steering vectors )( fqv for a fine grid of steering angles o

f
o 9090 ≤≤− q . 

Step 3: Define FT  as the solution of ∫
=

=
FT

dfF
0

minmin

min

min
)(

α
α αα , where F is a user-defined constant 

10 ≤≤ F . Notice that F is ultimately related to the percentage of false detections at the output of the 
proposed beamformer. For example, F=0 results in 0 informative eigenvectors (i.e., no false alarms, 
but also misses all true detections), while F=1 indicates that all eigenvectors are informative, leading 
to large number of false alarms. 
Step 4: Initialize kk us ˆ=  for Mk ..1= . 
Step 5: Find fq  for which ( ) Ff

H
k T<|)(|acos qvs . 
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Step 6: Remove )( fqv  from ks as: )(|)(| ff
H
kkk qq vvsss −=  for Mk ..1= . 

Step 7: Repeat from step 5 until ( ) Ff
H
k T≥|)(|acos qvs  for all fq . 

Step 8: The resulting non-orthogonal vectors kkk sug −= ˆ  (where Mk ..1= ), span the signal 
eigenspace. Applying singular value decomposition to kg gives the orthonormal basis ku , where 

Qk ...1=  and Q  is automatically determined by the column rank of kg . 
 
Notice that the main idea behind this algorithm is the removal of plane-wave wavefronts from the 
sample eigenvectors (step 6). Selecting which wavefronts are to be removed is done based on the 
criterion in step 5. By step 8, ks spans the noise subspace while kg spans the signal subspace. 
The eigenvector-based beamformer described in Table 1 was applied to simulated data by projecting 
the data into the ku basis estimated by the previous algorithm. An example of this result is shown in 
Fig.5, in which 120 Monte Carlo beamforming realizations were obtained for an experimental scenario 
consisting of a 100-sensor horizontal line array in the presence of 6 sources with azimuth 

,7,5.5,3,3.1,0 ooooo 3o , and o8 . Each Monte Carlo realization consists of generating M=10 data 
snapshots and applying adaptive beamforming. Figure 5 (a) shows )( MM

Ma
oBF = (i.e., the traditional 

MVDR result). Figure 5 (b) shows the proposed )(EVB
MaBF obtained by using a threshold 05.0=F (see 

step 3 in previous algorithm). A detailed view of the beamforming results is shown in Fig.5(c) for a 
single Monte Carlo realization. In this case, )(EVB

MaBF (red line) accurately detects five out of six targets, 
missing the one at o3.1 . In addition, an evident false detection can be seen at o43− . However,  )(EVB

MaBF  
yields sharper detections that allow clear view of the number of sources used in the simulation. 
Ongoing research on the proposed eigenvector-based beamformer is on relating the user-selected value 
of F to the percentage of false detections at the beamformer output, in such a way to provide a 
guaranteed false alarm rate. 
 
Figure 6 shows10 a comparison between MVDR(Fig.6 (a)) and EVB (Fig.6 (b) and (c)) beamformers 
applied to experimental data from the SWAP experiment.14 The results for EVB were computed using 
two false detection levels: with 05.0=F  in (b) only the most prominent targets are visualized, yielding 
fewer false detections compared to )( MM

Ma
oBF =  in (a). As in the simulated case, target detections are 

sharp, suggesting an improved azimuth resolution. By increasing the false detection level to 1.0=F , 
the number of target-related detections increases at the expense of a higher number of false peaks. 
However, even in this case EVB significantly reduces the number of false detections when compared 
to MVDR in Fig.6 (a). Details of the improvement in azimuth resolution of the EVB beamforming are 
shown Fig.7, which corresponds to a zoom-in view of the results in Fig.6.    
  
IMPACT/APPLICATIONS 
 
This work will benefit adaptive beamforming techniques, in particular algorithms that rely on accurate 
estimation of covariance matrices, matrix rank, and subspaces. This research aims to enhancing the 
sensitivity to detect genuine variations (trends) in signal statistics, by applying results from a growing 
body of research on the asymptotic behavior of eigenvectors of sample covariance matrices.3-8 This 
research provides: data-driven bounds for data segmentation based on data stationarity and improved 
estimators of signal vs noise subspaces of a sample covariance matrix computed from few snapshots.  
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Figure 5 Improved beamforming by exploiting sample eigenvector signal content:10 (a) MVDR 
beamformer )( MM

Ma
oBF = using 10=M snapshots/Monte Carlo realization; (b) Proposed eigenvector-

based beamformer )(EVB
MaBF  ; (c) )( MM

Ma
oBF =  (black line) versus )(EVB

MaBF (red line) for the first Monte 
Carlo realization in (a) and (b). Horizontal dashed lines indicate the azimuth of the six sources used 

in this simulation. 
 

 
Figure 6 Eigenvector-based (EVB) beamforming applied to experimental data (f=205 Hz) from the 

SWAP experiment collected at a sub-array with N=60 hydrophones:14 (a) MVDR beamformer 
)( MM

Ma
oBF = using 10=M snapshots; (b) )(EVB

MaBF  with false detection level 05.0=F ; (c) )(EVB
MaBF  with 

1.0=F . For comparison between beamformers, results are normalized with maximum 
corresponding to 0 dB. 
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Figure 7 Zoom-in view of Fig.6, showing the improved azimuth resolution obtained by the EVB 
beamformer in (b) and (c) compared to the MVDR beamformer in (a). Over plotted lines indicate 

actual ship lanes obtained from AIS data collected during the SWAP experiment. 14 
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