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Abstract 
 
During the most recent period of performance, the team has refined the major implemented functions 
of our MIDCA architecture at the cognitive level (Cox, 2013; Paisner, Cox, Maynord, & Perlis, 2014) 
and has started work on an analogous metacognitive cycle at the meta-level (Dannenhauer, Cox, 
Gupta, Paisner & Perlis, 2014; Perlis & Cox, 2014). We produced substantial progress on the 
knowledge-rich track of the Note-Assess-Guide interpretation procedure. Additionally we started an 
integration of MIDCA and the T-REX planning and scheduling system. This work explores the use of 
meta-level control for vehicle planning and behavior execution in dynamic environments. The initial 
data are encouraging and the path forward is favorable.  
 
LONG TERM GOALS 
 
The goal of this research is to articulate a computational foundation for robust long-duration agent 
autonomy and to provide a prototype implementation that exhibits flexible, goal-driven autonomy on 
an actual physical platform.  
 
OBJECTIVES 
 
The research team is developing an integrated theory of intelligent action, perception, cognition, and 
metacognition, is constructing a Metacognitive, Integrated Dual-Cycle Architecture (MIDCA) for this 
theory, and is applying an implementation of this architecture to scenarios in the domain of long-
duration robotic behavior.  
 
APPROACH 
 

We have begun to integrate a robotic agent architecture with a metacognitive architecture by 
formalizing an abstract model of the robot control structure thereby enabling the meta-level to reason 
over representations that instantiate this model. The key idea is to implement a metacognitive 
mechanism that records traces of agent reasoning as it dispatches between functional modules in 
service of its existing goals. If these traces are structured in a representation that is understandable by 

mailto:Michael.Cox@wright.edu
http://mcox.org/g-reason/summit-II


2 

the meta-level, then it can reason about the agent’s decision making as well as the agent’s behavior. 
Control is then passed back through the individual modules in terms of new goal structures and 
subsequently to agent effectors. 
 
WORK COMPLETED 
 
The project has completed the first year of a four year schedule and has made significant early 
progress. We are on schedule for spending commitments and expect to reach our expenditure target. 
During the reporting period, we have moved along our schedule, implementing a set of components to 
comprise a mature implementation of the MIDCA architecture. This will lead to a subsequent effort in 
the second year of the project that implements both object-level (i.e., cognitive) and meta-level (i.e., 
metacognitive) control of autonomous systems. The end result is robust response to unexpected and 
fluid environments found in long-duration missions. Finally through a recent ONR DURIP equipment 
grant (#N000141310890), we have acquired three Baxter humanoid robots1 on which we intend to 
apply this research and demonstrate the efficacy of the integrated architecture on physical, unmanned 
platforms.  
 
During this first year, we organized three events to highlight our research and to look for greater 
synergies in the larger research community. The first was a December Workshop on Goal Reasoning 
(http://mcox.org/g-reason) at the 2013 Conference on Advances in Cognitive Systems in Baltimore, 
MD. The second event was the NRL Goal Reasoning Summit held in April, 2014 at the naval Research 
Lab. The final was a second Goal Reasoning Summit (http://mcox.org/g-reason/summit-II) held at the 
University of Maryland Institute for Advanced Computer Studies during July, 2014. These meetings 
involved prominent researchers in academia, industry, and government and examined multiple 
technical issues relevant to this project.  
 
We have organized the subsections below by the task decomposition from the original proposal (see 
also Table 4 in the Work Plan section). The research tasks are as follows.  

1. Architecture Integration  

2. Domain and Scenario 

3. MIDCA Meta-Models (starts in year 2) 

4. T-REX Robustness (starts in year 2) 

5. GDA Learning (option – not funded) 

6. Evaluation 

 
We will briefly highlight the most important activity in each of the year-1 tasks. Tasks 3 and 4 were 
scheduled to start in year two and Task 5 was not funded. So we report on Tasks 1, 2, and 6.  
 
Architecture Integration (Task 1) 
 
The work performed during this current reporting period has resulted in a refinement of the MIDCA 
implementation. MIDCA consists of “action-perception” cycles at both the cognitive (i.e., object) level 

                                                             
1 http://www.rethinkrobotics.com/baxter/  
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and the metacognitive (i.e., meta-) level (see Figure 1). The output side of each cycle consists of 
intention, planning, and action execution, whereas the input side consists of perception, interpretation, 
and goal evaluation. A cycle selects a goal and commits to achieving it. The agent then creates a plan 
to achieve the goal and subsequently executes the planned actions to make the domain match the goal 
state. The agent perceives changes to the environment resulting from the actions, interprets the 
percepts with respect to the plan, and evaluates the interpretation with respect to the goal. At the object 
level, the cycle achieves goals that change the environment (i.e., ground level). At the meta-level, the 
cycle achieves goals that change the object level. That is, the metacognitive “perception” components 
introspectively monitor the processes and mental state changes at the cognitive level. The “action” 
component consists of a meta-level controller that mediates reasoning over an abstract representation 
of the object level cognition. 
 
The interpret phase of MIDCA has been the subject of much of our work, and is the focus of the 
experiments described in a subsequent subsection. It is implemented by two GDA processes that 
combine to generate new goals based on the features of the world the system observes. We call these 
processes the D-track, which is a data driven, bottom-up approach, and the K-track, which is 
knowledge rich and top-down. Both the meta-level cycle and the object level cycle contain K-track and 
d-track processes. At the object level, a statistical anomaly detector constitutes the first step of the D-
track, a neural network identifies low-level causal attributes of detected anomalies, and a goal 
classifier, trained using methods from machine learning, formulates goals. The K-track is implemented 
as a case-based explanation process. The meta-level processes are under re-development.  
 
The MIDCA_1.1 model (Paisner, Cox, Maynord, & Perlis, 2014) includes a complete planning-acting 
and perception-comprehension cycle at the cognitive level, and it incorporates a simple world 
simulator. The planning component integrates the SHOP2 (Nau, Au, Ilghami, Kuter, Murdock, Wu & 
Yaman, 2003) hierarchical network planner. This year we integrated the XPLAIN/Meta-AQUA 
(Burstein, Laddaga, McDonald, Cox, Benyo, Robertson, Hussain, Brinn & McDermott, 2008; Cox & 
Ram, 1999) multistrategy explanation system into the comprehension component. The simulator takes 
actions from the planner, calculates the changes to the world, and then passes the resulting state to the 
comprehension component. Comprehension examines the input for anomalies and generates new goals 
for the planner as warranted. 
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Figure 1. The current MIDCA architecture structure. 
 
During the period of performance covered by this report, we have also made progress in identifying the 
details of the MIDCA architecture that most impact a computational approach to metacognition. In the 
comprehension processes at the meta-level, we cast introspective monitoring as an explanatory 
diagnosis task of the object level. That is, given an anomaly and a trace of the object-level reasoning, 
MIDCA must map the symptom of failure to the cause of the failure. We have analyzed numerous 
categories of failure symptoms and organize them in terms of expected outcomes and observed 
outcomes. See Table 1. 
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Table 1. Anomaly symptom taxonomy. 

Actual (A) 
event 
exists

Actual (A) 
event 

does not
exist

Expectation (E)  
does not exist

Expectation (E) 
exists

False Expectation
or 

Self-fulfilling Prophecy

Impasse
or

Surprise

Contradiction 
or

Unexpected Success

Missed 
Opportunity

 

 
A contradiction exists when the expected outcome (E) for some cognitive computation is not equal to 
or inconsistent with the actually observed outcome (A). The unexpected success is when the outcome is 
expected to be failure but success occurs nonetheless. Impasse occurs when an outcome cannot be 
generated; surprise is when in hindsight it is determined that an outcome should have been produced. 
In both cases, E does not exist. Similarly, in the bottom row, the symptom categories include 
conditions where A does not exist or is not known. For missed opportunities, neither E nor A are 
present to be compared and are available only in hindsight. 
 
Like anomaly symptoms, we have organized the potential causes of failure into a similar taxonomy in 
Table 2. Four main categories exist in this taxonomy. Failure can result from object-level knowledge, 
goals, strategies or input from the environment. Each can be either missing or incorrect, and each has a 
selection component. For example forgetting is not a mistake due to incorrect knowledge, instead it is 
from incorrect or missing memory associations (i.e., indices). Similarly, correct information may exist 
in the input stream, but may not be attended to. This is a problem of input selection (i.e., attention) 
rather than of content. 
 

Table 2. Anomaly cause (fault) taxonomy. 
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We are currently developing the K-track meta-level introspective monitoring process to record the 
knowledge used, the goals pursued, the strategies employed, and the environmental input processed at 
the object level. That is, reasoning traces interpreted at the meta-level are represented by information 
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from the causal categories that distinguish between success and failure when reasoning. Meta-level 
control can then leverage the structure of these taxonomies.  
 
Domain and Scenario (Task 2) 
At the current time, we have the full plan→simulate→goal-generate→plan cycle implemented for a 
very simple variation of the blocks domain. This world includes blocks and pyramids. But instead of 
arbitrary block stacking, the purpose of plan activity is to build houses such that blocks represent the 
wall structure and pyramids represent house roofs. Within this domain, objects may catch on fire and 
so impede housing construction. New operators can extinguish fires and find arsonists. We have results 
that demonstrate better house construction performance using a top-down goal generation strategy 
compared to a statistical approach. Some of these details and a description of the individual 
interpretation methods used for comprehension are contained below.  
 
One of the current scenarios implements a house building cycle that transitions through states as shown 
in Figure 2. If a part of a house (i.e., a block) catches fire, an operator exists that can extinguish the 
fire. When parts of houses are on fire, they do not count toward rewards for housing construction. 
Rewards are provided in terms of points, one for each block or pyramid not on fire in each completed 
house or tower. For example if the agent Figure 2 (c) was to next pickup D and place it on A, then the 
result would be a tower worth 3 points. 
 

 

A
B CB C

A
B C

a) b) c)
DD

A

D

Put out fire with water
 

 
Figure 2. Unexpected events in the housing construction cycle. 

 
Object level cycle 
Most of our work this year at the object, or cognitive, level of MIDCA (i.e., the orange cycle in Figure 
1), was with the knowledge-rich or K-track processes. We integrated the EXPLAIN system to perform 
a high-level version of a Note-Assess-Guide (NAG) procedure during the interpretation process. 
EXPLAIN has expectations in memory that allow it to predict features of the environment it perceives 
such as that houses are in stable conditions. When instead they are on fire, this causes an expectation 
failure (i.e., MIDCA Notes a contradiction anomaly).  As a result, it explains what causes such an 
anomaly by retrieving prior general explanation patterns from memory and applying them to the 
current contradiction. The arsonist explanation shown in Table 3 is an example. 
 
Finally, after the system notes the problem of the fire and assesses it as being potentially caused by an 
arsonist, it guides a response to the anomaly by generating a goal to remove the cause of the problem. 
The basis for such a goal is found in the antecedent of the above explanation. The fire is caused by 
heat, fuel and oxygen (the XP consequent) which is due to the arsonist using a lighter to provide the 
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heat (XP antecedent). So if we achieve a goal of removing the arsonist, then we remove the cause and 
hence solve the problem. This example is generalized into the approach of recognize a new problem, 
explain what causes the problem, and generate a goal to remove the cause (Cox, 2013). The resultant 
plan to achieve the goal is to apprehend the arsonist. 
 

Table 3. Arsonist explanation pattern. 

 
Evaluation (Task 6): RESULTS 
We tested our approach relative to a base line of performance against the D-track techniques we 
developed previously.  The baseline condition called Exogenous Goals represents the behavior of the 
system with all goals provided by an exogenous user. Under the Statistical Goal Generation condition, 
we use the NAG procedures (see Maynord, Cox, Paisner, & Perlis, 2013; Paisner, Perlis, & Cox, 2013) 
that uses statistical machine learning techniques to learn reactive associations between states (e.g., 
block on fire) and goals (e.g., extinguished fire). The GDA2 Goal Generation condition uses D-track 
algorithms to generate new house construction goals and K-track explanation to generate goals for the 
fires (e.g., catch the arsonist). For each trial condition, MIDCA was run for 1000 time steps (equivalent 
to executing 1000 actions). At each step, the arsonist would have a probability p of starting a fire 
unless he had previously been apprehended. The value of p in the experiments described below was 
0.4, allowing for enough fires to be significant without precluding progress in the tower construction 
project.  
 

                                                             
2 Goal-Driven Autonomy. See Cox (2013). 
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Figure 3 shows that GDA approaches using only the D-Track as well as using both D-Track and K-
Track perform significantly better than a baseline that does not use GDA. The reason is that the 
Exogenous Goals condition, like standard planning methods, does not generate new goals at run time 
and so here the prevalence of fires is unconstrained.  Also, the combined D- and K-Track 
implementation outperforms the purely statistical variant by a large margin. The reason here is that the 
Statistical Goal Generation condition complete fewer towers because it spends effort repeatedly 
reacting to fires when they occur.  

 
 

Figure 3. Results of testing using 3 conditions. Note that the value of GDA Goal Generation  
in the Fire Prevalence panel is 2, which is too small to show clearly in the graph. 

 
Meta-level cycle 
In the current reporting period we have begun to implement the meta-level monitoring and control 
cycle shown in blue within Figure 1. Concurrently we have started implementations of both D-track 
and K-track processes. For the D-track, we have developed a method of separating interesting 
conditions in the trace of object level processing. This uses an echo network that is a version of 
reservoir nets.  The idea is to learn mappings from time-series representations of the cognitive cycle 
(as opposed to traces of behavior in the environment) to changes of goals (and their associated 
priorities) and thus cognitive performance. So far we have used this approach to distinguish fire 
scenarios from non-fire scenarios in the domain discussed above. As such this is an early exploration 
of the Note phase of the NAG procedure at the meta-level.  
 
In an approach to the K-track at the meta-level, we have started to integrate MIDCA with the Teleo-
Reactive EXecutive (T-REX) autonomous agent framework (Py, Rajan & McGann, 2010) that uses 
planning to satisfy system goals. In other research projects, T-REX has been deployed on underwater 
unmanned vehicles and used on the PR2 land robot. This framework balances the need for robotic 
agents to react quickly as well as the need to pursue long-term goals. This is achieved by a non-cyclic 
hierarchy of internal components, referred to as reactors, where each reactor has its own sense-plan-act 
loop. Reactors communicate with one another using constraints on state variables. State variables are 
visible to all reactors but are “owned” by at most one reactor. The reactor that owns a state variable is 
responsible for updating its value. Reactors that wish to change a state variable (i.e., the altitude of a 
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robot) owned by another reactor post a goal, which is a constraint on a state variable. All T-REX 
reactors have two important parameters that define a planning window in the future - lookahead (θ) 
and latency (λ) - and which are fixed and are set by the system designer before deployment. Lookahead 
specifies how far in the future the reactor should plan, and latency is how much time the reactor has to 
finish planning. However under different conditions, the parameter values may be inappropriate for the 
current tasks because no constant window size is best for all cases. By integrating the metacognitive 
layer of MIDCA with T-REX acting as the MIDCA object level, our approach is to allow MIDCA to 
monitor T-REX processing and adjust these parameter settings at run time (Dannenhauer, Cox, Gupta, 
Paisner, & Perlis, 2014). 
 
In order to modify T-REX in real time, MIDCA will make use of an application programming 
interface (API) with the T-REX architecture that provides introspective monitoring and meta-level 
control functionality. This API exposes function calls to update latency and lookahead values, as well 
as read current lookahead and latency values of any reactor. The API also allows MIDCA to read and 
write goals to T-REX which are interpreted as if they were goals from a user (the same way the agent 
receives goals at the start of a mission). To explore this idea we have experimented with different 
parameter settings under various goal conditions.   
 
Looking at Figure 4 we see that for both low window-parameter values (θ + λ < 9) and high values (θ 
+ λ > 17) the agent is able to achieve 2 goals, but when (9 <= θ + λ <= 17) we see that the agent is only 
able to achieve a single goal. While counter-intuitive, after further analysis it was discovered that when 
there were low values, the planner had to be very reactive and was able to achieve planning for both 
goals. When there were high values the planner had enough time to explore many different possible 
plans fully. However, during the middle part of the graph, the values were sufficient to allow the 
planner to explore multiple plans (i.e., more than just reactive behavior) but not large enough to allow 
the planner to find the end of the correct plan in time (i.e., planning was cut off). This is the result that 
we observed from running manual scripts. For our work in year 3, this is the kind of insight (i.e., low 
or high values achieve more goals than middle values) we expect MIDCA to be able to learn over time 
in a single mission and direct the behavior of the T-REX agent to either be in the low or high values, 
thus improving the number of goals achieved over time.  
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Figure 4. Number of goals achieved as a function of latency (λ) and lookahead  
(θ) values a simple domain. 

 
WORK PLAN 
 
Table 4 enumerates the 7 major tasks proposed for this project. We are roughly on schedule with 
respect to this outline, although we have changed our team structure and approach significantly to stay 
on schedule. See the section on Major Problems/Issues below. We also intend to push Tasks 3 and 4 
approximately 6 months into the future. That is, we will begin them half way into year 2.  
 
During the second year of the project, we intend to further develop the theoretical and computational 
foundations with the goal of developing a uniform approach to development and implementation. Our 
development work will focus on the metacognitive cycle and will strive to integrate K-track processes 
(e.g., planner monitoring and control) with D-track processes (e.g., echo net representations). Finally 
we plan to fully integrate the meta-level with the object level cycles which up to this point have been 
treated as independent systems, and we intend to demonstrate our results in simple tasks on physical 
research platforms by the end of year two. 
 

Table 4. Original Project Schedule and Task Assignments 
Tasks Year 1 Year 2 Year 3 Year 4 

1. Architecture Integration Team Team Team  

2. Domain and Scenario Team    

3. MIDCA Meta-Models  UMD UMD UMD 

4. T-REX Robustness  MBARI MBARI MBARI 

5. GDA Learning (option) Lehigh Lehigh Lehigh Lehigh 

6. Evaluation  Team Team Team Team 
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Major Problems/Issues 
We had intended to pursue the complete research project using the T-REX system as the object-level 
reasoning system to drive the physical platform; MIDCA would interpret and control T-REX while T-
REX would interpret sensor information and control the Dorado underwater platform. The plan was to 
use MBARI as a subcontractor, especially for Task 4. However this strategy has proved difficult due to 
contracting issues and the fact that the MBAR PI has left the organization and has still not settled on a 
home institution. Therefore we were never able to execute a subcontract during year 1. As a result we 
have decided to switch subcontract efforts to Lehigh University and will use the SHOP2 planner 
instead of T-REX for object-level control. As a result, Task 4 is renamed to Planner Robustness. The 
planner will probably be SHOP2, but we will ascertain the feasibility of this choice for the particular 
planner during the initial stages of Task 4. The target physical platform has also shifted from the 
MBARI Dorado to the Baxter research robot. 
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