
  

Grant or Contract # N00014-14-1-0476 

Long-duration Environmentally-adaptive Autonomous Rigorous Naval Systems 

Progress Report for Period: May 1, 2014 – September 30, 2014   

PI: Dr. Pierre F.J. Lermusiaux 

(617) 324-5172 

pierrel@mit.edu 

Department of Mechanical Engineering, Ocean Science and Engineering, 

 Massachusetts Institute of Technology; 

5-207B; 77 Mass. Avenue; Cambridge, MA 02139-4307 

http://mseas.mit.edu/Research/LEARNS/index.html, http://mseas.mit.edu/ 

Date Prepared: 09/25/2014 

Section I:  Project Summary 

1.  Overview of Project 

Our long-term goal is to develop and apply new theory, algorithms and computational systems for the 

sustained coordinated operation of multiple collaborative autonomous vehicles over long time durations 

in realistic multiscale nonlinear ocean settings, such that the integrated naval system optimally collects 

observations, rigorously propagates information backward and forward in time, and accurately 

completes persistent learning, environmental adaptation, machine metacognition and decision making 

under uncertainty. 

 

Specific Objectives:  

 Derive, implement and evaluate rigorous and efficient Bayesian smoothing theory and schemes that 

respect nonlinear dynamics and capture non-Gaussian statistics, for robust persistent inference and 

learning, integrating information backward and forward in time over long durations in large-

dimensional multiscale fluid and ocean dynamics.  

 Derive and develop adaptive sampling theories and methods that predict the types and locations of the 

observations to be collected that maximize information about the ocean system studied (e.g. about its 

model state variables, parameters and/or formulations) 

 Merge and refine our reduced-order DO stochastic equations with our path planning methods, to obtain 

new stochastic schemes for time-, coordination-, energy-, dynamics- and swarm- optimal path 

planning that efficiently account for ocean forecast uncertainties.  

 Develop efficient onboard routing and high-level adaptation schemes that utilize observations 

collected by vehicles to autonomously adapt optimal plans (e.g. for paths, sampling strategies, 

collaboration or decision making process). 

 Apply these schemes to simulated fluid and ocean dynamics, from idealized to realistic settings, and 

integrate these schemes for real sea exercises of opportunity involving distributed computations across 

components of the autonomous naval sensing systems. 

 

2. Activities this period 

Time-optimal Path Planning: Our previous path planning results include the development of an exact 

theory and an efficient algorithm for time-optimal routing of vehicles operating in strong, dynamic flows. 
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We have successfully extended this level-set based methodology to account for: obstacles, forbidden 

regions (both static and dynamic), uncertainty predictions of the flow-field, coordination among vehicles 

and on-board routing. Having completed various types of studies in both ideal and complex realistic 

ocean fields, our efforts during this period have been mainly directed towards publishing all the above 

results (Lermusiaux et al., 2014; Lolla et al., 2014a,b; Lolla and Lermusiaux, 2014; Lolla et al., 2014c).  

Time-optimal Path Planning for Anisotropic Vehicles (Sailboats): We generalized our level-set 

methodology for time-optimal path planning to the case of vehicles with anisotropic motion constraints. 

Without increasing the computational complexity, our algorithm now predicts the fastest paths of vehicles 

such as sailboats, whose speed depends on the direction and magnitude of the wind that drives them. Fig. 

1a depicts a typical polar diagram of the speed of a sailboat relative to the external flow, assuming the 

wind blows eastward at unit speed. This plot indicates that the sailboat achieves the optimal speed when it 

tacks at a non-zero angle relative to the wind. This anisotropic property seamlessly integrates with our 

existing framework and has been applied to several sailing-path planning scenarios, two of which are 

exemplified next.   

Fig. 1b illustrates the optimal trajectory (in black) of a sailboat operating in the presence of a uniform 2D 

wind, directed northward. The sailboat starts at coordinates (0.2, 0.5) (marked by a red circle) and must be 

steered to the red star at coordinates (0.5, 0.5), located east of the start point. The optimal trajectory 

resembles an inverted ‘V’ shape, whose steepness directly depends on the tacking angle that leads to the 

maximum sailboat speed. Hence, the sailboat optimally utilizes the wind during both legs of its journey to 

minimize its travel time.  

Fig. 1c considers the case of a sailboat operating in (i) an unsteady ocean flow past a circular island and 

(ii) a spatially uniform unsteady sinusoidal wind blowing in the NE-SW direction. The intent is to 

simulate the qualitative behavior of the coastal breeze, whose direction reverses during the course of any 

given day. The sailboat needs to be steered from the west of the domain (marked as a circle) to the far-

east (marked as a star) in minimum time. The lower panel of Fig. 1c depicts, in blue, the intermediate 

level sets (reachability fronts) computed using our generalized path planning methodology. The optimal 

sailboat trajectory, computed using a modified backtracking procedure, is shown in red.  

 

 

Figure 1: Time-optimal path planning for sailboats: (a). A typical polar diagram of a sailboat, for wind of unit magnitude 

blowing eastward. The blue curve shows the speed of the sailboat at different angles relative to the wind direction. The lack 

of azimuthal symmetry enforces anisotropic constraints on the sailboat motion. (b) The inverted ‘V’ shaped time-optimal 

trajectory of a sailboat navigating from (0.2, 0.5) to (0.5, 0.5) in a uniform wind directed northward. (c) Motion of a sailboat 

in an unsteady flow past a circular island, with sinusoidal wind in the SW-NE direction. The intermediate level set contours 

are shown in blue, while the optimal trajectory is depicted in red.    
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Energy-based Path Planning: We developed a novel stochastic optimization method to compute energy-

optimal paths, among all time-optimal paths, for vehicles traveling in dynamic unsteady currents 

(Subramani, 2014; Subramani et al., 2014). The method is based on solving a stochastic level set equation 

using a dynamically orthogonal decomposition. The nominal vehicle speed is set-up as a to-be-optimized 

random variable in the level set PDE, and new dynamically orthogonal (DO) level set PDEs are derived. 

Our DO methodology is 100-1000 times faster than a classic Monte Carlo method for solving the 

stochastic level-set PDE. Global optimization is possible when all acceptable nominal vehicle velocity 

functions are sampled during the stochastic simulation step. The sampling can be done from a 

probabilistic distribution (e.g. uniform distribution), or a stochastic process (e.g. random-walk or a more 

general suitable Markov process). The advantage of this method is that the optimum solution within the 

class can be found in a single stochastic optimization step. If the class within which the search is 

performed is complete, one can then obtain the true solution. If the class is not complete, one can utilize 

the optimal result obtained for a given class to hierarchically generate new classes from the existing ones, 

hence refining the optima at each stochastic optimization, aiming to obtain the true solution for a 

complete class iteratively. 

To demonstrate the nuances and inner workings of our methodology, we first applied it to two steady 

flow test cases, one that simulates a steady front, and the other, a steady eddy. For the first steady front-

crossing test case, we formulated a dual energy-time optimization problem, and solved it to obtain a 

“semi-analytical” solution. This semi-analytical solution was then compared to the optimal energy path 

obtained from our Stochastic DO Level-Set Optimization method. Figure 2 illustrates the test case setup. 

Table 1 give the optimal parameters for a pre-chosen time to reach of t= 0.26, as obtained from solving 

the dual optimization problem (in MATLAB) and from the DO methodology. The close agreement 

between the two optimal estimates validates our stochastic DO level-set optimization methodology. 

Table 1: Comparison of optimal parameters obtained using dual optimization and using 
new stochastic DO level-set optimization method for the optimal front crossing test-case 
for the chosen time to reach, t=0.26. 

 

Next, we applied our methodology to plan paths that are energy-optimal among all time-optimal paths in 

an idealized ocean simulation. Here, we used the wind driven double gyre flow field, which simulates the 

Gulf Stream in the Atlantic Ocean, and Kuroshio in the Pacific Ocean. Figure 3 shows the energy utilized 

by vehicles that are operated with different nominal engine speed time-functions.  

Figure 2: A uniform jet flowing from 

west to east between y=0.4 and y=0.6 

simulates a steady front. The mission 

is to start the vehicle from the Start 

point (circle) and travel to the End 

point (star) by crossing the front. 
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Figure 3 A non-dimensional wind driven double gyre flow field (Re=1000 and non-dimensional wind stress a=1000) is utilized 

to plan the heading and engine-speed time-histories of a vehicle starting from (0.2, 0.2) in the domain and heading to a target at 

(0.6, 0.6). Left: shows the exploration of time-to-reach and energy expended by vehicles whose nominal engine speeds have been 

sampled either by Uniform Sampling or by Random Walk Sampling. Right: shows 4 paths corresponding to points marked on 

the left panel. For example, for the given time to reach of t=0.013 (point 2), our results show that the minimum-energy path 

among all random-walk-engine-speed vehicles (vehicle varying its nominal speed according to a random walk) utilizes 15% less 

energy than the vehicle that uses a constant nominal speed. Another result shown is that of a vehicle which has a constant 

nominal speed of 10 (point 3) and executes a longer path by “riding the currents”, but thereby utilizes less energy (but at the cost 

of arriving later) than a vehicle with non-dimensional speed of 40 (point 1). 

Finally, we applied our methodology to plan paths in 

realistic simulated conditions. The mission considered was 

to start just offshore of Buzzard's Bay near WHOI and 

reach a target in the AWACS region, as shown in Fig. 4. 

Gliders that travel at relative horizontal velocities between 

10 cm/s and 30 cm/s are assumed to be released on Aug 28, 

2006 at 00 UTC. The flow data is obtained from the 

MSEAS free-surface primitive-equation model utilized in 

an implicit two-way nested computational domain set-up, 

with both tidal and atmospheric forcings. These simulated 

ocean flows assimilate real ocean data and correspond to a 

reanalysis of the real-time AWACS and SW06 exercises 

(Aug.-Sep. 2006) in the Middle Atlantic Bight and 

shelfbreak front region.  

 

Figure 4 The start point is marked as a circle and the 

end point is marked as a star. The initial flow on 

Aug 28, 00 UTC is shown on the color axis in cm/s. 
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All gliders are assumed to follow the same yo-yo 

pattern in the vertical and the effects of the small 

vertical ocean velocities are assumed to be 

accounted for in the forward motions of the 

vehicles. We consider yo-yo patterns from the near 

surface to either the local near bottom or 400 m 

depth, whichever is shallower (for the mission 

considered, a large portion of the paths occurs on 

the shelf, within about 20 to 100 m). The horizontal 

currents that a glider encounters during its yo-yo 

motion are then the horizontal currents integrated 

along its path. Of course, it is the path to-be-

determined that specifies the currents that are 

actually encountered. Our new stochastic DO level-

set based energy optimal path planning method is 

employed to determine the time-optimal level sets 

for the class of relative glider speeds considered. 

Within that class, the evolution of the level sets 

corresponding to the minimum energy is obtained 

by sorting and the energy-optimal paths are 

computed by backtracking. We note that our 

method computes a large set of energy optimal 

paths, for a range of arrival times. Only a few of such paths are shown in Fig. 5, three of which are 

energy-optimal solutions, the other is also a time-optimal but constant-speed path shown for reference.  

Adaptive Ocean Sampling and the GMM-DO Smoother: Our research in this area is focused on the 

development of an optimal non-Gaussian Bayesian smoothing scheme for high dimensional stochastic 

systems, such as ocean flows, that are governed by nonlinear dynamics. Smoothing enables inference of 

the system state, both backward and forward in time. This includes the accurate learning of initial 

conditions, which is an integral component of reanalysis studies. Smoothing also allows one to assess the 

impact of candidate future observations on present states through the metric of mutual information. This 

can efficiently utilize the limited oceanic sampling resources by deploying them at locations that 

maximize the mutual information between the observations and the forecast quantities of interest.  

We developed a novel GMM-DO smoother, building on concepts from our GMM-DO filter. The 

smoother uses the DO equations for uncertainty prediction and the GMM-DO scheme for filtering. 

Smoothing is performed using a state augmentation procedure in which the past and the present states are 

first appended to form the prior distribution of a larger state vector. Observations are then assimilated by 

efficiently carrying out Bayes law in the reduced DO subspace of the augmented vector, using our GMM-

DO filter. The smoothed distribution is then read off from the posterior of the augmented state vector. We 

implemented this new smoother and tested it using the example of a stochastic flow exiting a strait or an 

estuary. Results are illustrated next.  

Figure 5: (a) Path that reaches in the shortest time, 12.96 

days, but consumes the highest energy. (b) Path that takes 

6 more days to reach the end point (18.78 days), but 

utilizes 40% less energy. (c) Path that reaches in 16 days 

using a constant speed. (d) Path that also takes 16 days 

but is energy optimal: it utilizes about 10% less energy 

than the path at constant speed. The vehicle speed along 

the path is plotted in color. 
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The top-left panel of Fig. 6 shows the true solution, a noisy observation of which is recorded by the nine 

static sensors marked in black and arranged in the form of a 3x3 grid. Observations are made at all integer 

times between t=20 and t=40, and at times 50, 60 and 70. The top-right panel shows a snapshot of the true 

solution at time t=20. The bottom panels shows the posterior mean of the flow-field, computed by our 

GMM-DO smoother. The bottom-left panel shows the mean of the posterior flow-field at time t=70, while 

the bottom-right one shows the mean smoothed flow at time t=20, both determined after assimilating all 

observations until t=70. The qualitative performance of the smoother can be judged by comparing the 

similarity between the lower panels and their true solution counterparts in the upper panels. We see that 

the smoother estimates resemble the true solutions very well, indicating that the smoother is a powerful 

estimator of the true flow. Figure 7 provides quantitative metrics to analyze the smoother performance. 

The left panel of Fig. 7 shows the RMS error between the smoother mean and the true solution at time 

t=20, as observations are assimilated (observation times shown in gray). It is clear that as more 

observations are made, the error in the smoother estimate reduces, providing a significant improvement 

over the filtered estimate. Moreover, as depicted in the right panel of Fig. 7, the trace of the smoother 

covariance matrix (that indicates the level of uncertainty in the posterior estimates) also diminishes as 

observations are made. These results suggest that the smoother estimates globally converge in a Bayesian 

sense to the true solution, as more observations are collected.    

 

 

Figure 6: Flow exiting a strait or 

an estuary: Top-left: True flow 

field at time t = 70. Nine static 

sensors are arranged in the form 

of a 3x3 grid near the mouth of 

the constriction. Top-right: True 

solution at time t=20. Bottom-

left: GMM-DO filter mean 

estimate at time t=70. Bottom-

right: GMM-DO smoother mean 

estimate at time t=20. All panels 

depict the flow streamlines 

overlaid on a color plot of the 

flow magnitude 

Figure 7: Left: RMS error (black markers) in 

the GMM-DO smoother mean estimate at time 

t=20. The first black dot indicates the RMS 

error of the filter (i.e. assimilating observations 

made only at t=20). Assimilating subsequent 

measurements (indicated by gray bars) reduces 

the RMS error. Right: Trace of smoother 

covariance matrix at time t=20. Reducing 

values of the trace indicates greater confidence 

in smoother estimates, as more data is gathered. 

Ideally, this curve (right) should resemble the 

observed RMS error (left) 
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3. Significance of Results 

The rapidly increasing usage of mobile units such as AUVs in naval exploration and sampling missions 

demands rigorous and efficient methodologies to minimize operational costs. Energy optimal path 

planning of underwater vehicles still remains an open problem and poses formidable challenges, arising 

mainly due to (i) the lack of a closed-form solution, (ii) the continuous nature of the problem, and (iii) the 

resultant infinite dimensional control space. Our DO-based stochastic level-set optimization approach 

allows us to efficiently search this control space, while retaining the core advantages of the underlying 

level set methodology for path planning (e.g. rigorous, efficient, direct collision avoidance). This novel 

technique, therefore, is a significant advancement over existing energy based path planning methods. Our 

research results in adaptive oceanic sampling and smoothing are also significant. Smoothing enables 

accurate learning of the central stochastic system by propagating information from observations both 

forward and backward through time. Additionally, it facilitates the computation of the information 

content of candidate observations, which may be used to derive optimal adaptive sampling strategies for 

the operating naval vehicles, thereby maximizing their utility.   

4. Plans and upcoming events for next fiscal year 

We first plan to validate the GMM-DO smoother by applying it to high dimensional linear problems and 

systems with reversible dynamics, in which cases true posterior distributions can be computed. We further 

plan to analyze the GMM-DO smoother by comparing its performance with other smoothers in the 

literature, both Gaussian and non-Gaussian. We then plan to implement a novel adaptive sampling 

scheme, using the GMM-DO smoother to compute the mutual information. We intend to develop theory 

and schemes on “adaptive sampling swarms” and “artificial intelligence for collaborative swarms”. We 

plan to account for uncertain stochastic ocean predictions in our planning schemes, both for single paths 

and for coordinated paths maintaining vehicle formations. We also plan to initiate research towards other 

optimality criteria such as dynamics-optimal and swarm-optimal. We plan to start integrating our novel 

smoothing, adaptive sampling and path planning to enable long-duration environmentally-adaptive 

autonomous rigorous naval systems. We plan to continue to transfer the methods and algorithms to NRL. 

We expect to continue to apply our work to four-dimensional realistic ocean fields and/or participate to 

sea exercises, aiming to couple ocean-acoustic predictions, uncertainty prediction, autonomous strategies 

for learning and swarming, with all feedbacks. We will continue to report our findings and enable 

knowledge transfer through publications and participation in technical conferences. 

5. Recommended reading 

Lermusiaux P.F.J, T. Lolla, P.J. Haley. Jr., K. Yigit, M.P. Ueckermann, T. Sondergaard and W.G. Leslie, 

2014. Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean 

Vehicles. Chapter 11, Springer Handbook of Ocean Engineering: Autonomous Ocean Vehicles, 

Subsystems and Control, Tom Curtin (Ed.), In press. 

Lolla, T., Lermusiaux, P. F. J., Ueckermann, M. P. and Haley Jr, P. J. (2014a). Time-optimal path 

planning in dynamic flows using level set equations: theory and schemes. Ocean Dynamics, 64(10), 1373-

1397. DOI: 10.1007/s10236-014-0757-y 

7



  

Lolla, T., Haley Jr, P. J. and Lermusiaux, P. F. J. (2014b). Time-optimal path planning in dynamic flows 

using level set equations: realistic applications. Ocean Dynamics, 64(10), 1399-1417. DOI: 

10.1007/s10236-014-0760-3 

Subramani, D.N., Lolla, T., Haley, Jr, P.J., Lermusiaux, P.F.J. (2014). A Stochastic Optimization Method 

for Energy-based Path Planning. The Dynamic Data-driven Environmental Systems Science Conference, 

Cambridge MA, In press. 

Sondergaard, T. and P.F.J. Lermusiaux, 2013a. Data Assimilation with Gaussian Mixture Models using 

the Dynamically Orthogonal Field Equations. Part I. Theory and Scheme. Monthly Weather Review, 

141, 6, 1737-1760, doi:10.1175/MWR-D-11-00295.1. 

6. Transitions/Impact  

We met with (and provided theory and software to) different NRL researchers. We transfer results to 

ONR-supported PIs. The aide of Rear Admiral Titley, Mrs. Jen Landry, LCDR USN, successfully 

completed her SM with our group in Aug, 2014. We continue to work with Steve Rutherford (OPNAV 

N2/N6E) and NR-Stennis for transition possibilities. We maintain a software web-page for the 

distribution of our results.  MIT undergraduates are involved in this research. They are sponsored by 

MIT’s Undergraduate Research Opportunities Program (UROP). Undergraduates completed research and 

their senior thesis with us on the science of autonomy. Material from this project is used in MIT courses. 

Companies (e.g. air transports, shipping) and research labs (e.g. MIT Lincoln Lab) contact us for our 

methods, software and ongoing collaborations. 

7. Collaborations 

We collaborate with several ONR-supported PIs and had meetings with other PIs in the Science of 

Autonomy program.  Collaborations occurred with our related ONR project “Stochastic Forcing for 

Ocean Uncertainty Prediction” (N00014-12-1-0944) and Naval Research Laboratory – Stennis project 

(N00173-13-2-C009). Visitors from the NATO CMRE research center and Pisa/Bologna Universities 

were also given methods and software. 

8. Personnel supported 

 

Principal investigator: Dr. Pierre F.J. Lermusiaux 

 

Graduate Students: Tapovan Lolla, Deepak Subramani 

 

Research staff: Dr. Patrick Haley Jr. 

 

Undergraduate Students: Ben Hessels, Quantum Wei (both for free to this grant and ONR) 

 

List of any students previously supported by the program who have taken positions performing DoD 

relevant research and where they have gone 

 

Jen Landry - LCDR U.S. Navy 
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9. Publications 

Publications resulting from this project (some of these publications started as part of N00014-09-1-0676): 

 

Journal Articles 

Lolla, T., Lermusiaux, P. F. J., Ueckermann, M. P. and Haley Jr, P. J. (2014a). Time-optimal path 

planning in dynamic flows using level set equations: theory and schemes. Ocean Dynamics, 64(10), 1373-

1397. DOI: 10.1007/s10236-014-0757-y 

Lolla, T., Haley Jr, P. J. and Lermusiaux, P. F. J. (2014b). Time-optimal path planning in dynamic flows 

using level set equations: realistic applications. Ocean Dynamics, 64(10), 1399-1417. DOI: 

10.1007/s10236-014-0760-3 

Lermusiaux P.F.J, T. Lolla, P.J. Haley. Jr., K. Yigit, M.P. Ueckermann, T. Sondergaard and W.G. Leslie, 

2014. Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean 

Vehicles. Chapter 11, Springer Handbook of Ocean Engineering: Autonomous Ocean Vehicles, 

Subsystems and Control, Tom Curtin (Ed.). In press. 

 

Haley, P.J., Jr., A. Agarwal, P.F.J. Lermusiaux, 2014. Optimizing Velocities and Transports for Complex 

Coastal Regions and Archipelagos. Ocean Modeling, sub-judice. 

 

Lolla, T. and Lermusiaux, P.F.J (2014). Time-optimal path planning in strong dynamic flows. Submitted 

to SIAM Journal of Control and Optimization. 

Lolla, T., Haley Jr., P. J., and Lermusiaux, P. F. J (2014c). Path planning in multiscale ocean flows: 

coordination, pattern formation and dynamic obstacles. Submitted to Ocean Modeling. 

Conference Papers 

Subramani, D.N., Lolla, T., Haley, P.J. Jr. and Lermusiaux, P.F.J., 2014. A Stochastic Optimization 

Method for Energy-based Path Planning. 2014 Dynamic Data-driven Environmental Systems Science 

(DyDESS) Conference. In press. 

 

Other Publications 

Subramani, D.N.: Energy Optimal Path Planning Using Stochastic Dynamically Orthogonal Level Set 

Equations. Master’s thesis, School of Engineering, Massachusetts Institute of Technology (September 

2014) 

Hessels, B.D. Time-optimal Path Planning for Sea-surface Vehicles under the Effects of Strong Currents 

and Winds. BS in Mechanical Engineering. Massachusetts Institute of Technology (May 2014). 

Cumulative List of Journal Articles 

- N/A 

  

10. Point of Contact in Navy 

 

Jen Landry - LCDR U.S. Navy, 08/26/2014 
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Ruth Preller (NRL Stennis), 09/15/2014 

Gregg Jacobs (NRL Stennis), 07/01/2014 

Charlie Barron (NRL Stennis), 09/20/2014 

Ira Schwartz (NRL - DC), 08/13/2014 

Steve Rutherford (OPNAV N2/N6E), 11/01/2012 
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12.  Metrics 

[Please include each of the following metrics.  If none, please indicate N/A.] 

Number of faculty supported under this project during this reporting period: 1 (0.6 month) 

Number of post-doctoral researchers supported under this project during this period: 0 

Number of graduate students supported under this project during this reporting period:   2 

Number of undergraduate students supported under this project during this period:  0 (2 for free) 

Number of refereed publications during this reporting period for which at least 1/3 of the work was done 

under this effort:  3 

Number of publications (all) during this reporting period: 9 

Number of patents during this reporting period:  0 

Number of M.S. students graduated during this reporting period: 1 

Number of Ph.D. students graduated during this reporting period: 0 

Awards received during this reporting period:   

- Tapovan Lolla, Wunsch Foundation Silent and Hoist Crane Award for Excellence in Research, 

MIT, 05/15/2014 (student full time on this proposal) 

13.  1-2 paragraph summary of all accomplishments for the entire grant  

Several refereed publications on our time-optimal path planning were published or completed and 

submitted. We developed a novel stochastic optimization methodology based on Dynamically Orthogonal 
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(DO) level set PDEs for identifying energy-optimal paths among all time-optimal paths in complex, time 

varying flow fields. The paths so planned utilize less energy by intelligently making use of favorable 

spatiotemporal currents while avoiding adverse currents. We demonstrated the methodology first for a 

simple, yet important steady flow field and validated the solution through a semi-analytical classic 

optimization solution. Then, we applied our methodology to plan paths in a wind driven double gyre flow, 

which is an idealized ocean simulation for the Gulf Stream in the Atlantic Ocean, and Kuroshio in the 

Pacific Ocean. Finally, we demonstrated that the method could be successfully applied to real ocean flows 

by planning paths for completing a mission in the Hudson Canyon/ Middle Atlantic Bight region. 

 

We also generalized our level-set methodology for time-optimal path planning to the case of vehicles with 

anisotropic motion constraints. Without increasing the computational complexity, our algorithm and 

codes can predict the fastest paths of vehicles such as sailboats whose speed depends on the direction and 

magnitude of the wind that drives them. This also applies to more detailed models of underwater robots 

and propelled surface-crafts which account for direction-dependent form drags and drags due to surface 

and internal waves. 

 

We developed the GMM-DO smoother, an optimal non-Gaussian smoothing scheme that respects 

nonlinear dynamics and retains non-Gaussian statistics of the system state. It is applicable to high-

dimensional stochastic systems such as ocean flows and enables accurate inference of the system state, 

both backward and forward through time. It allows one to assess the impact of candidate future 

observations on past states through the metric of mutual information. It also facilitates optimal adaptive 

sampling, allowing the efficient use of observational platforms by deploying them at locations and at 

times that provide maximum information about the fields of interest. The GMM-DO smoother uses the 

DO equations for uncertainty prediction and the GMM-DO scheme for filtering. Smoothing is performed 

using a state augmentation procedure in which the past and the present states are first appended to form 

the prior distribution of a larger state vector. Observations are then assimilated by efficiently carrying out 

Bayes rule in the reduced DO subspace of the augmented vector, using our GMM-DO filter. The 

smoothed distribution is read off from the posterior distribution of the augmented state vector. This 

smoother was successfully implemented and tested for the case of stochastic flow exiting a strait or an 

estuary, achieving global convergence to the true solution in the limit of sufficient observations.   

 

14.  A list of which items on the SOW will be worked on during FY14 (Oct 2014 to Sept 30 2015).  

Please give this to me as narrative text and not just as a list of numbers from your proposal.  Please divide 

by base and potential option if you have both. 

 

We first plan to validate the GMM-DO smoother by applying it to high dimensional linear problems and 

systems with reversible dynamics, in which cases true posterior distributions can be computed. We further 

plan to analyze the GMM-DO smoother by comparing its performance with other smoothers in the 

literature, both Gaussian and non-Gaussian. We then plan to implement a novel adaptive sampling 

scheme, using the GMM-DO smoother to compute the mutual information. We intend to develop theory 

and schemes on “adaptive sampling swarms” and “artificial intelligence for collaborative swarms”. We 

plan to account for uncertain stochastic ocean predictions in our planning schemes, both for single paths 

and for coordinated paths maintaining vehicle formations. We also plan to initiate research towards other 

optimality criteria such as dynamics-optimal and swarm-optimal. We plan to start integrating our novel 
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smoothing, adaptive sampling and path planning to enable long-duration environmentally-adaptive 

autonomous rigorous naval systems. We plan to continue to transfer the methods and algorithms to NRL. 

We expect to continue to apply our work to four-dimensional realistic ocean fields and/or participate to 

sea exercises, aiming to couple ocean-acoustic predictions, uncertainty prediction, autonomous strategies 

for learning and swarming, with all feedbacks. We will continue to report our findings and enable 

knowledge transfer through publications and participation in technical conferences. 

 

15.  If you are in your final year, will you require a no-cost extension to your period of performance?  If 

so, until when? 

- N/A 

 

16.  1 summary PowerPoint slide of your entire project in any format.  This should be something I can use 

to brief your effort to an external audience at a professional society meeting or to explain the significance 

of your work to my management in a few minutes when I am overviewing my entire program. 

 

See attached 
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