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LONG-TERM GOALS 

Fuse refractivity inferred from electromagnetic (EM) propagation observations with background fields 
from numerical weather prediction (NWP) models to create a tactical decision aid with improved 
battlespace awareness. 

OBJECTIVES 

Develop data fusion method for atmospheric refractivity scheme based on objective analysis. Develop 
means to map observations of refractivity based on radio frequency (RF) propagation measurements 
into the space utilized for the analysis. Incorporate refractivity from clutter (RFC) algorithms to provide 
observational input to Refractivity Data Fusion (RDF) algorithm. Exercise the data fusion scheme on a 
combination of synthetic and real data to assess performance. Achieve reasonable processing time (on 
the order of 1-minute) with a representative domain size using a high-end laptop computer. Develop 
techniques to incorporate meteorology-dependent relationships to improve accuracy of the solution. 

APPROACH 

An initial approach to estimation of atmospheric surface layer parameters by fusing radar clutter data 
with ensemble predictions from NWP is described in [1]. We now describe fusing EM observations 
with NWP background for the region above the surface layer (that includes surface based ducts and 
elevated ducts). This more complex, nonlinear problem involves: 
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1. Mapping from the space of EM signal enhancement (typically dBs) into the space of modified 
refractivity, which can be highly non-linear. 2. Mapping from 3-dimensional refractivity space of NWP 
output to the diagnostic parameter space of EM inverse method implementations (e.g., 
refractivity-from-clutter), such as the trapping layer height and the M-deficit (the change in refractivity 
across a trapping layer). 3. Performing an objective analysis in the diagnostic space which can account 
for possible vertical displacement, thereby preserving ducting features. 

Due to the degree of non-linearity in the problem, it is doubtful that a best approach can be analytically 
arrived at, as was the case for RFC. Rather, how to best implement the problem of performing an 
objective analysis for refractivity is amenable to a variety of alternative approaches. 

In this project, a hybrid 3- and 2-dimensional variational analysis scheme (3D/2D-VAR) [2 and 3] is 
implemented. We start with the Cartesian representation of refractivity generated by the COAMPS 
model, referred to here as prognostic representation. We utilize diagnositc routines to find heights and 
modified refractivity values for inflection points associated with trapping layers for each vertical 
refractivity profile in the prognostic refractivity volume. For our purposes, the diagnostic variables are 
derived from the profiles of meteorological variables listed in Table 1. The diagnostic variables 
facilitate direct operations on the heights and gradients of trapping layers. It should be noted, though, 
that diagnostic variables only represent the features that are important in EM propagation. For example, 
if a surface based duct were present with the top of the duct at 200 meters, then only the lower 200 
meters of the refractivity profile would be characterized by the diagnostic variables so it would not be 
unusual for the diagnostic variables to not contain features above 200-or-so meters. The result is that 
the 3-D prognostic representation is characterized by 2-D diagnostic representation. 

The mapping from the space of the prognostic values to the space of the diagnostic values is unique; 
that is not necessarily so in the other direction. The process flow in as follows: 

1. Profiles of COAMPS meteorological variables (modified refractivity, surface and surface-air 
temperature, surface winds) are used to populate the prognostic background representation. 2. 
Algorithms calculate the diagnostic variables associated with each NWP grid box from the prognostic 
representation. 3. Utilizing RFC, observations of EM propagation are mapped into space of the 
diagnostic variables. The diagnostic variables chosen (Table 1) are quantities typically utilized in 
inversions of refractivity from signal power measurements and inversion of refractivity from radar 
clutter. 4. An objective analysis is performed in the space of the diagnostic variables. This results as is 
standard for objective analysis in an adjustment to the 2-D diagnostic representation over the domain. 
5. In a step referred to as vertical integration, the analysis on the diagnostic variables is mapped into the 
space of the prognostic variable (profiles of modified refractivity) at each grid box in the original NWP 
domain. 

Both the prognostic background values and the diagnostic analysis values are used to generate a feature 
preserving (i.e., preserving the features of the original prognostic profile) analysis in the space of the 
prognostic variables. 

WORK COMPLETED 

The structure of RFC has been adopted and integrated into the RDF framework, providing parameters 
related to the profiles of refractivity that are important to radar propagation. Also, RFC produces 
properties of both evaporation and surface-based ducts. RDF has been developed so that it can run 
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end-to-end with arbitrary input on some subset of the duct diagnostic parameters. We have generated a 
set of ensemble predictions from COAMPS NWP, which is instrumental in understanding the spatial 
and temporal variability, and inter-relations of the diagnostic parameters. These ensembles have 
allowed us to develop an understanding of the background covariance between diagnostic parameters, 
which is an important input for RDF. From the WALLOPS 2000 campaign, we have processed and 
analyzed 190 helicopter profiles of temperature and humidity, which gives us an indication of the 
fidelity of the RFC and RDF algorithms. Additionally, we have calculated duct properties for 119 
retrievals of radar clutter from the SPANDAR instrument located at Wallops Island, VA. As well as 
utilizing the helicopter propfiles, we have used direct measurements of propagation loss as calculated 
by the Microwave Propagation Measurement Experiment (MPME) in collaboration with colleagues 
from the Naval Surface Warfare Center Dahlgren Division. Our research in RDF was presented in two 
talks at the 2015 IEEE International Symposium on Antennas and Propagation and North American 
Radio Science Meeting in July 2015. 

RESULTS 

An essential element of the RDF algorithm is the import of real observations, derived from ship-board 
EM-propagation equipment, that are merged with NWP output. The RFC algorithm has been developed 
so that it can be readily fed into RDF. Utilizing SPANDAR radar clutter maps from the WALLOPS 
2000 field campaign, we have processed real observations that are coincident in time and space with in 
situ measurements of the atmosphere, to understand the efficacy of our algorithms. Our initial method 
ingests a single observation from SPANDAR of all the diagnostic parmeters from RFC, but efforts are 
ongoing to include input of multiple observations, each potentially with different bits of information. 
Figure 1 describes the method of RFC, and how it is incorporated into RDF. The radar clutter for a 
single sweep of the SPANDAR radar is used as input for RFC. Along the 135 degree radial from 
Wallops Island, which is coincident with the location of in situ observations, the radar loss as a function 
of distance (line in figure) is fit to a library of loss patterns and their associated duct properties. The five 
best-fit loss patterns are displayed with the observations in Fig 1b, and the corresponding profile of 
modified refractivity that each loss pattern is associated with is displayed in Fig 1a. It is the diagnostic 
parameters that define these profiles that are then ingested into RDF. We currently are using the best fit 
profile, but utilization of quality of fit of each profile can help build better estimates of uncertainty in the 
propagation domain. 

An important aspect of RDF is that it can ingest the RFC-derived observation of any subset of the 
diagnostic properties in one direction, and update the diagnostic properties across the entire area of 
interest. In order to accomplish this, we explore how the observed value of one diagnostic parameter 
relates to the other parameters both at the location of the constraint, but over the entire domain. For 
example, if RFC gives us confidence that the M-deficit is a certain value at one location of the domain, 
we need to understand how that information translates to knowledge of the top of the trapping layer 
both at the same location, and elsewhere. We use ensemble NWP simulations to shed light on this 
problem. For the WALLOPS campaign, a 32-member ensemble of COAMPS simulations was 
generated from varying initial boundary conditions. This gives an idea of how variability in each 
diagnostic parameter relates to variability in another parameter at a given location. Figure 2 shows the 
mean correlation coefficient between six diagnostic parameters across the 32 ensemble members for all 
12 12-hour forecasts. The relationships that we derive here are dependent on the overall meteorological 
domain, and have different values at other times. We have created a single covariance matrix for use on 
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all observations from the ensemble runs. In addition to understanding the covariance at a single 
location, it is important to extend this across the entire domain of interest. Figure 3 shows the same 
covariance calculation, but extends it across our entire NWP domain. In this figure, the colors represent 
the correlation across the ensemble members between the values at the center of the domain (white 
square) of the diagnostic variable listed at the top of each column with the values of the diagnostic 
variable listed next to each row at each point in the domain. This demonstrates that there is spatial 
inhomogeneity with respect to the covariance, and that these patterns are regime-dependent (not 
shown). An important area of future research is to determine how much information about these 
covariance matrices is needed for accurate prediction, and can meteorological information guide the 
selection a best covariance relationship. From the limited number of simulations that we have, we can 
discern that these relationships are dependent on the meteorology. 

In order to explore the effect that atmospheric dynamics has on correlation between diagnostic 
variables, we utilize a k-means clustering algorithm. Applying the clustering algorithm to the diagnostic 
parameters from the NWP, we see the average profile for each of the five clusters in Figure 4. 
Additionally, we want to see how the different duct properties are manifested in the relationships 
between the diagnostic parameters. Figure 5 shows the average correlation between the parameters for 
each of the five clusters. We can see significant difference in the relationships needed as input to the 
RDF algorithm, and this is an are of future research. 

Utilizing the profiles of meteorological variables from the helicopter measurement from WALLOPS 
2000, we compare the ability of RDF to replicate the observed profiles of modified refractivity. Figure 6 
displays the profiles of modified refractivity as a function of range from Wallops Island due southeast 
from the helicopter observations (Fig. 6a), the RFC algorithm applied to a SPANDAR radar retrieval 
(Fig. 6b), and COAMPS 12-hour prediction prior to (Fig. 6c) after (Fig. 6d) implementation of RDF for 
a single observation on May 04, 2000 at 1845Z. There is marked improvement in the representation of 
the duct properties (from Fig. 6c to Fig. 6d) as observed both by the in situ (Fig. 6a) and radar-derived 
(Fig. 6b) observations. While not all realizations show such pronounced improvement, RDF is an 
effective method for incorporating radar-derived observations of meteorology, and applying these 
observations across an area of interest. 

The true metric of RDF lay in its ability to improve the prediction of the radar propagation environment. 
For the same case noted above, we calculate the loss of a radar signal through the environment specified 
by the profiles of refractivity using the Advanced Propagation Model (APM Figure 7). The inclusion of 
radar information into the propagation domain, using RFC (Fig. 7b) and RDF using input from RFC 
(Fig. 7d), adds significant more detail to the propagation domain as compared to the initial COAMPS 
profiles (Fig. 7c). Both RFC and RDF better match the propagation that would be observed using the 
helicopter profiles (Fig. 7a). More work is required to ensure a consistent and robust algorithm for a 
variety of meteorological conditions, and to calculate the precise amount of improvement that occurs by 
utilizing RDF. Utilizing the propagation data collected during Wallops 2000, we will compare observed 
propagation with that derived from the RDF implementation. 

In order to understand how well RDF is doing, we want to aggregate the results displayed in Figs. 6 and 
7 for all cases where an observation of RFC and an NWP simulation exist. For each time where there 
was an RFC/Helo/COAMPS observation or simulation, we calculate the loss at 5m at a range of from 
10 to 80km, and compare the calculation of loss from COAMPS (baseline), RFC (single observation), 
and RDF (single observation merged with NWP information), as compared to the loss calculated using 
the observed profiles of refractivity from the helicopter soundings. Figure 8a shows the histogram of the 
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mean squared error (in dB) for each of the 59 cases where all four data sources are available. An 
additional calculation of propagation loss was done using a single evaporation duct calculation at 
Wallops Island, and assuming uniform M-profiles throughout the domain. For this case, RFC has the 
smallest error (mean of 8.2 dB) relative to the Helo observations, as compared to RDF (mean 13.1 dB) 
and COAMPS (mean of 20.1 dB). Additionally, we have utilized the presence of in situ measurements 
of propagation loss from MPME to compare our three data sources to. Figure 8b shows the histogram 
of the same 59 cases for the mean squared error in the propagation loss as compared to the measured 
loss from MPME. In this case, RDF has the smallest errors compared to observations (mean of 14.7 
dB), as compared to RFC (mean of 21.6 dB) and COAMPS (mean of 18.0 dB). More research is needed 
to expand the set of observations to validate RDF using the Wallops 2000, and using upcoming field 
campaigns that our researchers are taking part in (CAPSER, Trident Warrior 2016). 

In addition to the scientific work on RDF, our project has been tentatively approved for participation in 
Trident Warrior 2016 (TW16) Experimentation Venue. We have been developing the needed 
documentation and accreditation to ensure that the RDF laptop will pass all the information assurance 
(IA) checks needed to take part in TW16. 

Diagnostic Variables 
M-Excess 

Trapping Layer Top Height 
Trapping Layer Base Height 

dM/dz 
M-Deficit 

Evaporation Duct Height 

Table 1: List of diagnostic variables derived from numerical weather model output. 

IMPACT/APPLICATIONS 

PA trend in radar and radio is to enable tapping of device status and data such as observed power to 
other devices. For example, clutter power measurements with the SPS-48 E are now provided to 
down-stream processing to enable display of hazardous weather. RDF in conjunction with inverse 
methods in EM propagation enables using such data to refine refractivity estimation. This allows a 
better characterization of the environment for the purpose of prediction of EM propagation, utilizing the 
equipment (radars, radios, etc.) that are already aboard a ship. The resulting RDF fields could then be 
inverted into standard meteorological variables and incorporated as additional observations, in what are 
typically data denied or data sparse over water environments, into mesoscale model data assimilation 
schemes. 

TRANSITIONS 

The refractivity data fusion (RDF) has been selected as a Rapid Transition Project under SPAWAR 
PMW-120 and ONR-322 funding. 
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RELATED PROJECTS 

None. 
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Figure 1: (a upper left) The observed radar clutter as a function of range from Wallops Island 
(black) is compared to the five best fits from the RFC library of propagation loss. (b upper right) The 
profiles of refractivity associated with the five loss patterns in (a). The diagnostic parameters for the 

five best fits are shown in the table in the center. (c lower) The propagation loss derived from the 
APM model for the best RFC prediction (blue line in (a) and (b)). 
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Figure 2: Mean across all 12 12-hour forecasts during the Wallops 2000 campaign of hte correlation
 
coefficient across the 32 ensemble members between the diagnostic parameter on the top, with the
 

parameter on left side for a single point at the center of the domain.
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Figure 3: Mean correlation coefficient across the COAMPS ensemble members between the value of
 
the diagnostic parameter listed on the top at the center of the domain (black cross) with the value of
 

the diagnostic parameter on the left side at each grid box in the domain.
 

9
 



Figure 4: Mean profiles of modified refractivity for each of five clusters derived from applying a
 
k-means clustering algorithm to diagnostic parameters from COAMPS NWP during the Wallops
 

2000 field campaign.
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Figure 5: Mean zero-lag correlation matrices for each of the five clusters. Significant variability in
 
the relationships between the parameters can be seen to relate to the diagnostic paramters, which is
 

impacted by the local meteorology.
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Figure 6: Profiles of modified refractivity as a function of range due southeast from Wallops Island 
(a) derived from in situ observations of temperature and humidity from helicopter soundings, (b) 
output from RFC, (c) background COAMPS, and (d) COAMPS adjusted using RDF algorithm 

applied at 25 km (red triangle). 
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Figure 7: Propagation loss (in dB) as a function of range southeast from Wallops Island and height 
using (a) helicopter profiles, (b) SPANDAR-derived RFC observation, (c) background COAMPS, and 

(d) RDF-adjusted COAMPS using a single RFC profile at 25 km range. 
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Figure 8: Histogram of mean-squared error in the propagation loss at 5m height, from 10 to 80km 
range, for COAMPS (green), RFC (red), RDF(blue) and Evaporation duct only (magenta), as 

compared to (a) APM forced by helicopter soundings, and (b) directly-measured propagation loss 
from MPME 
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