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LONG-TERM GOALS 

Develop elastic parabolic equation (EPE) method capabilities in order to characterize effects of elastic 
propagation mechanisms such as elastic interface scattering, conversion from elastic propagation to 
acoustic propagation, and intense interface waves on underwater acoustic environments with elastic 
bottoms or elastic ice cover. 

OBJECTIVES 

To apply EPE solutions to scenarios that include fluid-elastic boundaries, either at the ocean floor, or at 
the ocean surface as an elastic ice layer. Computational tools will be developed or enhanced to 
characterize the transmission of elastic wave energy to acoustic energy in the water column. Elastic 
material parameters will be varied for analysis of the dissipation of water column acoustic energy 
resulting from interaction with elastic layers. In particular, oceanic T-waves, Scholte interface waves, 
and plate flexural waves of an elastic ice layer are geophysical mechanisms whose effect on acoustic 
transmission loss will be evaluated. The impact of range-dependent seafloor or ice layers on acoustic 
propagation will be considered as a means to predict the presence of elastic ice layers. 

APPROACH 

In a cylindrically symmetric environment, where r is the distance from the source and z is depth, recent 
parabolic equation methods for acoustic propagation in elastic sediments are based on the (ur,w) 
formulation of elasticity, where ur is the horizontal derivative of the horizontal displacement and w is 
the vertical displacement.[1] The outgoing portion of the separated Helmholtz operator leads to the 
parabolic equation for a range-independent environment,     

∂ ur ur ∂ u 
= i(L−1M)1/2 , ur = , (1)

∂ r w w ∂ r 

where L and M are matrices containing depth-dependent operators that incorporate compressional wave 
speed, cp, shear wave speed, cs, and density ρ via the Lamé parameters of the elastic medium, λ and µ . 
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Range dependence is included by modeling sloping boundaries with a stair-step approximation and 
applying appropriate matching conditions at each vertical interface. 

Elastic parabolic equation solutions have been generated for a single fluid-elastic interface occurring at 
the ocean bottom. To incorporate the effects of an elastic ice layer into these solutions, additional 
boundary conditions must be explicitly enforced during calculation of the acoustic field. In particular, 
the ice-air interface requires ta zero traction condition, expressed as vanishing normal and tangential 
stresses. These conditions can be written 

∂ w
λ (ur) + (λ + 2µ) = 0, (2)

∂ z 

and 
∂ ∂ ∂ w 
(λ (ur)) + (λ + 2µ) + ρ ω 2w = 0. (3)

∂ z ∂ z ∂ z 

which are then discretized using a Galerkin method.[1] The ice-water interface requires the same 
conditions as the water-seafloor interface: continuity of vertical displacement, continuity of normal 
stress, and continuity of tangential stress. 

Wavenumber content of an EPE solution can be used to resolve modes present in the solution and 
determine if they are propagating acoustic modes, leaky acoustic modes, interface wave modes, or 
represent other types of elastic propagation. The wavenumber spectra are calculated using the Hankel 
transform of the range-dependent acoustic field solution. 

Elastic normal mode solutions were obtained using a Green’s function approach that has been shown to 
be accurate for underwater acoustic environments with elastic ocean bottoms.[2] The addition of a 
range independent ice layer leads to a complicated characteristic equation for horizontal wavenumbers 
that is solved using a winding integral technique.[3] Modal solutions obtained using these wavenumbers 
compare accurately to wavenumber integration solutions for range-independent environments and can 
be used for analysis of mode shapes and determination of elastic mode behavior, for example as a leaky 
mode or interface mode. 

WORK COMPLETED 

• Elastic PE solutions with deep seismic sources[4] demonstrate generation and propagation of 
oceanic T -waves and Scholte interface waves at the ocean bottom.[5] 

• The capability of EPE solutions to generate accurate solutions in an ice-covered environment for 
range-independent environments was established.[3] 

• Horizontal wavenumber spectra obtained from EPE solutions reveal an excited flexural mode that 
propagates in the ice layer at certain acoustic frequencies in ice-covered environments.[3] 

• Previously implemented EPE self-starters[4] generate solutions in complicated range and depth 
dependent beach and island propagation scenarios and demonstrate conversion of energy from 
purely elastic propagation to acoustic propagation and back.[6] 
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RESULTS 

Elastic parabolic equation results were benchmarked against elastic normal mode solutions in a 
range-independent elastic ice-covered environment with an elastic ocean bottom. Horizontal 
wavenumbers for a 20 Hz source in the water layer are shown in Fig. 1(a) for an example with a 10 m 
ice layer as open circles. Dashed lines indicate wavenumbers k1,k2,ks,2,k3, and ks,3, corresponding to 
the water layer sound speed, bottom compressional and shear wave speed, and ice layer compressional 
and shear wave speed respectively. Propagating acoustic modes occur between k1 and k2. The 
wavenumber furthest to the right corresponds to the plate flexural mode of the ice layer.[7] This 
wavenumber has a calculated wave speed of 795.0 m/s, which is consistent with a theoretically 
predicted wave speed of 782.7 m/s for a plate flexural mode with the parameters in this example.[8] The 
other wavenumber to the right of ks,2 has a wave speed approximately 82% of the bottom shear speed 
and corresponds to a Scholte wave. Neither of these modes would occur in a fluid-based solution. 

Figure 1: (a) Horizontal wavenumbers (open circles) from elastic normal mode solution for a 20 hz 
source in a range independent environment with a 10 m thick ice layer and 100 m thick isospeed 
water layer over an elastic bottom. Dashed lines correspond to relevant compressional and shear 

wave speeds in the three media. The wavenumber furthest to the right corresponds to a plate flexural 
mode of the ice layer and has a wavespeed consistent with physical theory. The other wavenumber to 

the right of k2 corresponds to a Scholte interface mode propagating at the ocean bottom.(b) Solid 
curve shows horizontal wavnumber spectra obtained from parabolic equation solution for a source at 

99 m under the ice layer and reciever at 85 m. This source receiver configuration shows the 
excitation of the Scholte interface mode. Dashed curve shows spectra for a source at 1 m depth and 

receiver at 25 m, showing the excitation of the plate flexural mode. 

Figure 2 shows elastic parabolic equation solution results for a 75 Hz source placed at r = 0 m and 
source depth 55 m in an environment with range-dependent ice and bottom interfaces. The ice-water 
interface varies from 1 to 2 m thickness over the 12 km range shown. The water column has a range 
independent double-duct sound speed profile shown in Fig. 2(a), which is similar to one obtained from a 
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Figure 2: (a) A double-ducted Arctic profile similar to an experimental CTD cast from the Beaufort 
Sea. (b) Elastic parabolic equation solution using the profile in (a) for an environment with an 

elastic bottom layer and elastic ice cover. A 75 Hz acoustic source is located at r = 0 km and zs = 55 
m. Effects of the sound speed profile are evident from the concentration of acoustic energy 

propagating above 75 m depth. (c) Detail of the top 10 m of the contour plot in (b) illustrating 
acoustic propagation and conversion to elastic energy in the ice layer. At points where the ice layer 

thickens acoustic energy is transmitted from the water column into the elastic layer. 

CTD cast in the Beaufort Sea in March 2009.[9] The ocean bottom interface is also range dependent 
with a depth of approximately 210 m. Both range dependent interfaces were constructed for 
demonstration. Transmission loss contour plot is shown in Fig.2(b). The effect of the double-duct is 
evident at approximately 3 km range, where acoustic energy appears trapped above 50 m. Figure 2(c) 
shows a detail of ice layer and shallower depths of (b). Acoustic energy is scattered from the water into 
the ice layer when it is increasing in thickness, specifically near 4 and 7 km. 
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IMPACT/APPLICATIONS 

• Improved modeling capabilities of elastic parabolic equation methods for underwater acoustic 
problems where elastic properties of the bottom or an overlying ice layer cannot be ignored. 
Specific cases include the generation and propagation of oceanic T -waves by seismic sources 
which are relevant for geophysical study or test ban treaty monitoring. 

• Oceanic T -waves and interface waves are potential explanations for “deep seafloor arrivals” and 
the reception of acoustic signals in what may be otherwise considered a quiet ocean environment 
for monitoring. 

• Advances in modeling acoustic propagation in elastic layers has potential application in ice 
covered environments where an elastic layer lies on top of the water column. These advances are 
relevant to inverse problems where there is a desire to remotely determine the presence or absence 
of an ice layer. 

RELATED PROJECTS 

This research relates to the separately funded work of Robert Odom (Applied Physics Laboratory, 
University of Washington) regarding the two-way coupled mode code and acoustic propagation in 
ice-covered environments. It also relates to parabolic equation development by Jon M. Collis (Colorado 
School of Mines). 
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