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» Synthetic Natural Environments

— Fleet Battle Experiment Hotel
— Global 2001

* Critical Issues:
 How Much 1s Enough?
« Temporal and Spatial Scales (natural, req’d)

» Uncertainty Propagation / Communicating it

* For the Wartfighter g;g
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Maritime Environment for FBE’s

Assemble Archived
Data Sources

Initialize Model

Assimilate near
Real time data

ﬂ-h‘_" ey

Atmosphere

Ocean COAMPS dliata

Wave Height

Buoy Data

v . o~ | |

MODAS and POM

Bathvmetrv For water column

Daily Forecast/Nowcast Process
Creates Data for JSAF Simulation

0000: Receive COAMPS Forecasts
Run ECOM for each Forecast
Compute 48 hours of ECOM data
0600: SERVE Maritime Environment to FBE
Replace prior forecasts with new data
2330: Prepare to repeat process

Days/hours before FBE

Daily during FBE

Sources: NAVO,
NRL/SSC, MEL

Sources: NAVO,
NRL/SSC, any

Required Work: Design Methodology,
Modify Server, Enable Simulated Sensors




HLA - An
Architectural Mandate

e Challenge: Exploit the High Level Architecture (HLA) to use
environment server and develop effects server as federates

.
P

Ata Effects

Federates !

Federatlon Management
Object Management

Simulations

Live Player
Interfaces

Declaratlon Management
Ownership Management

SSI
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What Must Models Include?

A Problem of Time: Refresh rates.

— Littoral Ocean Regions are characterized by
long and short term factors, but unlike the deep
water, short term effects are more significant

° A PrOblem Of Space R~ Rossby (Baroclinic) Radius --‘/6% H

f

— Rapid changes

in bottom slopes
create the need for

non-uniform grids

Ref: Nittrouer and Wright (1994).
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Minehunting

e Minehunting 1s going organic

« Experiments and Training must reflect

— PC-SWAT (Sammelmann) to model sonar

28 June 2001

* System Performance Evaluation




Model Results

Littoral Dynamics

28 June 2001
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Shallow Water TaCtIC al Imp aCt

— Subject to surface and Very Shallow Water Deeper Water
mixing effects (QJR 1-3) Op Area 3

— More responsive to
atmospheric forcing

Deeper Water
20 40 &0 a0 100 120 140
— Profiles more stable Time ()
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Sea Surface Elevation (m)
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Sources of Uncertainty

Can originate from.

* Uncertainty in input data

* Model equation approximations

* Model resolution: spatial, time scales
* (discretization “error”)

» Stochastic elements of model

Sol
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System of “Black Boxes™” (Models)

— Model tenders aren’t plug compatible

Common representation of uncertainty

— Otherwise you have confusion

Mean, Covariance 1S minimum necessary
— For P(detect), P(fa)

How does uncertainty propagate?

28 June 2001
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Major Challenges

* Application of Filtering to Ocean Model
* Dimensional Reduction

* Evaluation of Effects of Oceanographic
Uncertainty on Acoustic Propagation

Sol
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Kalman Filtering
« Kalman / Extended Kalman Filtering

— Systems are non-linear

» Straightforward approach has deficiencies
— Assumption of independence
— EKF: not best capture of nonlinear behavior

* Consider Modified Approach

— Covariance Intersection for dependence

— U-Transform for nonlinear tracking

Sol
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— Determine dimensional reduction
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Covariance Intersection (CI)
Update Equations

To combine two state estimates, {a,A},{b, B}, to get {c,C}

C=(@A"'+(1-w)B")

¢ =C(wA™'a+(1- w)B'b)’

Which can be compared to the Kalman update

C=(A"+B") =4 A" +4B"')
c= C(A‘la + B‘lb)_1
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1 Covariance Intersection (CI)
How 1t works (geometrically)

Blue:

— input 1 sigma uncertainty contours

Red:

— fused 1 sigma uncertainty contours
for arbitrary cross-covariance

Red:

— CI update uncertainty contours

— select based on optimality criterion

P. for different @ values

— Places a bound on true uncertainty .
SS] s
— 28 June 2001 - =




Nonlinear
Transformation

covariance as the prior distribution

*Apply nonlinear transformation to each point in set

Advantages: requires no change to computational model, more
accurate than linearization, same order of calculation as extended

Kalman Filter i

2
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U-Transform, cont’d

 Symmetric y - points:

Xo(k|k) =
Wo —
X; (k| k)
Wi

Xi—l—n (k I k)
Wi—l—n —

 In 2D, these simply look like:

X1
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% (k| k),
k/(n+ k),

% (k| k) + (\/(n+r)P (k| k))
1/{2(n+ K)},

(k| k) = ((n+R)P (k| K))
1/{2(n+ k) }.
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U-Transform Updates

1. Determine the set of projected y - points from
Xi(k4+1|k)=f[Xi(k|k),u(k), k]

2. Calculate the mean as

2n
1 1
R(k+1|k) = kXo(k+1k)+ =) Xi(k+1]k)
n 2 4

i=1

3. Calculate the covariance as

P(k+1(k) = ——{slXo(k|K) ~x(k+1|R](Xo(k k) ~%(k+1 | R

2n

+ %Z[xi(k+1 [ k) —x(k+1|R)][Xi(k+1]k)—%(k+1] ”‘”’)]T}

i=1
.
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Dimensional Reduction

 State space representation 1s redundant

* Evidence shows significant reduction is
possible

* Reduction 1s necessary for filtering

(algorithmic scaling)

Sol
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Acoustic Problem Statement
Given a mean and covariance estimate of water column conditions,
predict the uncertainty associated with a mean acoustic performance
estimate in a region of interest

Sex
pCace & Techno

Issues
Are we trying to:
* Support an individual detection?
« Support a mission plan?
» Study the acoustic effects of oceanographic events?
What is the scenario?
* ASW - low frequency, deeper waters, long range propagation
* MIW — high frequency, shallower waters, short range propagation
What is the allotted processing time?
* Dictates acoustic model complexity

» Dictates uncertainty propagation approach
(e.g. Monte Carlo simulation vs. table-look-up)

How much information can be usefully passed to the warfighter?

%
H ol
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£ Generating Realizations of Environment
Based on Environmental Mean and
Covariance Estimate

Given: Mean and covariance estimate of environment

Generate: Realizations of environment to carry environmental uncertainty
through to acoustic uncertainty

Process: Decompose Environmental Variability into Eigenfunctions
* Reduces and Orthogonalizes Environmental Parameter Space
 Analytical vs. Empirical?... Question for research
 Analytical decomposition allows for phenomenological description
« Empirical decomposition allows for accurate description of variability
» Question: Is acoustic model sensitivity too great for general phenomenological
description alone?

» Realizations of variable environment are used to run acoustic models.
» Statistical analysis of acoustic output used to determine acoustic uncertainty.
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Example: Orthogonal Function
Expansion of SVP

0 0

50 50

+ a2X 15077773
A 200 |

100

250

300 ! ! ! 300 ! ! ! 300 . . . 300
1500 1510 1520 1530 154 1500 1510 1520 1530 1540 -1 0.5 0 0.5 1 -1 0.5 0 0.5 1

A Sound speed (m/s)

« Empirical Orthogonal Functions (EOF) coefficients

» Zero mean, assumed Gaussian, with known variance
(D,=VTDV)

» Case shown: o, = 4.3 (m/s), o,= 1.5 (m/s)

|+ One-day simulated svp variations due to tidal fluctuations only
* Provides reasonable estimate of svp covariance to use for example
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Computing Acoustic Uncertainty
using Monte Carlo Simulations

Experiment
| v
10m * Model: OASES-TL, 3.5kHz,
Rl 100m . )
T - omni-source, range-independent
Source Receiver T  Acoustic Metric: Detection Range
* 100 Realizations
100 realizations of SVP Distribution of Detection Range

0.3

JoTE A~

.. *Mean = 5800m
e Std = 500m

OO TRt O COSHOSO0
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1 1 1
1510 1520 1530 1540 4 4.5 5 55 6 6.5 7
Sound speed (Imm/s) Detection Range (km)

* MCS requires assumption of pdf
* MCS may be too time-consuming for real-time




@ Linearized Covariance Transfer

Step 1: Generate Acoustic Sensitivity Matrix

S)I; 2)? ; ;1 S = Sensitivity matrix
GY; ayj a)év Y = Acoustic Model Output Parameters
S = o0X, oX, oX, X = Acoustic Model Input Parameters
: : . : (sound-speed)
oY, 0dY, 0Y,,
0% X, OXy | X=X,

- Input parameters must be independent (EOF)
* Possible output parameters: detection range, point TL, coefficients

of curve-fitted TL

Step 2: Transfer Input Covariance
dY = SdX Covariance of Input Parameters

Cpy=E|@) (@) | =SD,8" gﬁg
-

Sol
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Toeo~os Toseam 78 —

To®o~os Tostam 8 —

EOF Coefficient
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Detection Range vs Variations in a,

S,,=0R,/0a,=2?

Detection Range vs Variations in a,
S,,=0R, /0a, = ??

Conclusions

* Need to linear acoustic model
*For fast transfer of uncertainty
Conventional Sonar Metrics are
*Not well behaved

* Need better behaved acoustic meas

*(l.e., eigenstructure)
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