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1.1 Application to Uneven
Bottom Effects
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Source imaging: utilizing a 
concept  of scattering matrix
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Source image as a function of X

Parameters :
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1.2 Application to Scattering
from Internal Wave Soliton
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Pekeris waveguide with 
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h m1 144=

z

h m2 6=

N s1
10 012= −.

ρbot = 13.

N2 0= c m s2 1500= /

( )ρ0 z c m s1 1490= /

c m sbot = 1800 /

a km ( )
a kn ( )

S k k kmn ( ) ( ' )δ −



June 16, 2004Uncertainty DRI Final Review Chantilly, VA

2 4 6 8 10 12 14

2

4

6

8

10

12

14

n

m

Mode Scattering Matrix at IW soliton: h0=27.8 m, F=100 Hz, α=0 deg

0

5

10

15

0

5

10

15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

n

Mode Scattering Matrix at IW soliton: h0=27.8 m, F=100 Hz, α=0 deg

m

|S
nm

|

2 4 6 8 10 12 14

2

4

6

8

10

12

14

n

m

Mode Scattering Matrix at IW soliton: h0=27.8 m, F=100 Hz, α=80 deg

0

5

10

15

0

5

10

15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

Mode Scattering Matrix at IW soliton: h0=27.8 m, F=100 Hz, α=80 deg

m

|S
nm

|

Scattering matrix at IW soliton: 
F=100 Hz, h=27.8 m; N=15 modes



June 16, 2004Uncertainty DRI Final Review Chantilly, VA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3

3.5

n

λ n

Scattering at IW soliton: h0=27.8 m, F=100 Hz, α=80 deg : eigenvalues

Spectrum of S-matrix and eigenvectors

0 10 20
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

n

v 1

0 10 20
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

n

v 2

0 10 20
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

n

v 3

Scattering at IW soliton: h0=27.8 m, F=100 Hz, α=80 deg : eigenvectors

0 10 20
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

n

v 15

Weak 
scattering

effects

Strong 
scattering

effects



June 16, 2004Uncertainty DRI Final Review Chantilly, VA

Uncertainty due to IW solitons
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2. Hydrodynamic Description of 
the Internal Wave Solitons
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Strong IW soliton for 2.5 layer model

h x( )

( )( ) ( )( )− + + + + + − =
1
2

1
1
2

1 02 1 2 2 2 2
h c h c g hx z x zΨ Ψ ∆( ) ( ) ρ

Ψ Ψ Ψxx zz

N
c

( ) ( ) ( )2 2 2
2

2
2 0+ + =

Ψ Ψ Ψxx zz

N
c

( ) ( ) ( )1 1 1
2

2
1 0+ + =

Governing equation:



June 16, 2004Uncertainty DRI Final Review Chantilly, VA

Strong IW solitons
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COPE data

Theory

Internal solitary wave profile
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3.  Chernov – Markov approximation
for propagation of low frequency

acoustic fields in random waveguide
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Statistical description
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Chernov-Markov approximation
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Governing equations for 
correlations
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Optical theorem
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Calculation of scattering
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Scattering cross section
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Diffusion approximation
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Solution at large x
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Numerical estimate
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Cross-range correlation 
functions
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4. 3-D vs. 2-D acoustics for
average acoustic field
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Problem formulation
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Governing equations
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Average field calculation

Helmholtz equation in the operator notations:
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Average field calculation – cont.
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An equation for average field
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Average filed modes
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Perturbative case
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Average Green function
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2D vs. 3D case
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2D vs. 3D – cont.
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Internal wave case

For example for GM spectrum one has:
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Conclusions

• The concept of Modal Scattering Matrix is useful for source imaging 
applications

• A hydrodynamic theory was developed for hydrodynamic description
of the strongly non-linear internal wave solitons in the realistic  
environment

• Experimental data indicate that correlation radius of the acoustic 
field in cross-range direction is of the order of 500 m – 1000 m. 
Theoretical interpretation based on scattering at internal waves is 
developed.

• A theory was developed which is applicable to the low-frequency 
sound propagation in the real ocean up to frequencies of the order 
of a few hundred Hz

• A theroretical description of the average acoustic filed was 
developed and applied to the estimate of the role of 3-D effects
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ApproachApproach

3-D and 4-D effects are often impossible or impractical 
to model in the deterministic sense
typically weak but not necessarily negligible
described using appropriate perturbation theories within the ray 
or “vertical modes – horizontal rays” representations of the 
acoustic field
corrections to acoustic observables due to the 3-D and 4-D effects 
are expressed in terms of quadratures which involve 
environmental perturbations and acoustic quantities calculated 
within 2-D propagation models
propagation of statistical moments of acoustic observables rather 
than individual realizations of the random acoustic field
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Horizontal refraction due to Horizontal refraction due to solitonssolitons
of  internal gravity wavesof  internal gravity waves
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Bearing perturbationsBearing perturbations
due to an IW due to an IW solitonsoliton
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Horizontal refraction due to an IW Horizontal refraction due to an IW solitonsoliton: : 
ray travel time correctionsray travel time corrections
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Geometry of the 1987 Reciprocal Transmission Experiment (RTE)
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3-D and 4-D acoustic effects in deep water have been modelled assuming RTE87 
geometry and three types of hydrological processes: gyre-scale variations in the sound 
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IWIW--induced fluctuations of the induced fluctuations of the 
horizontal refraction anglehorizontal refraction angle

RTE87 Canonical sound speed profile
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Acoustic frequency wander Acoustic frequency wander 
in deep oceanin deep ocean

RTE87 Canonical sound speed profile
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Two models of Two models of 
sound speed fluctuationssound speed fluctuations
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Monte Carlo vs. direct calculation Monte Carlo vs. direct calculation 
of the travel time bias (2)of the travel time bias (2)
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Statistical Properties of the Statistical Properties of the 

Acoustic Field in Inhomogeneous Acoustic Field in Inhomogeneous 

Oceanic Environments: Oceanic Environments: 

Uncertainties in the Acoustic Field Uncertainties in the Acoustic Field 

Associated with Rough Surface Associated with Rough Surface 

ScatteringScattering
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TravelTravel--Time Statistics for Waves Time Statistics for Waves 
Scattered at a Rough SurfaceScattered at a Rough Surface
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TravelTravel--Time Statistics for Waves Time Statistics for Waves 
Scattered at a LargeScattered at a Large--Scale Rough SurfaceScale Rough Surface

Travel-time bias of reflected acoustic waves as a function of (a) the receiver depth (q0 = 
0∞, 45∞, and 60∞, L =200 m, zs = 5000 m, <h2> = 4 m2) and (b) the angle of incidence (L = 
100 m, 150 m, and 400 m, zp = zs = 1000 m) 
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TravelTravel--Time Statistics for Waves Time Statistics for Waves 
Scattered at a SmallScattered at a Small--Scale Rough SurfaceScale Rough Surface

Travel-time PDF (A) and bias of reflected acoustic wave as a function of the angle of 
incidence (B) (L = 20 m, 15 m, and 10 m, zp = zs = 1000 m , <h2> = 0.25 m2) 
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The travel time The travel time PDFsPDFs of early arrivalsof early arrivals
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AccomplishmentsAccomplishments

• uncertainties in acoustic observables associated with cross-range environmental gradients and 
internal-wave induced sound-speed time-dependence have been quantified;
• numerical algorithm has been developed to predict statistical moments of acoustic signals in 
horizontally-inhomogeneous waveguides with time-dependent parameters;
• hydrodynamic theory has been developed for a dynamic description of strongly non-linear internal 
wave solitons in a realistic environment;
• a quasi-stationary approximation has been developed to efficiently model acoustic effects of the 
time-dependence of the environmental parameters. New and improved techniques have been put 
forward to incorporate data on oceanic currents into acoustic propagation models based on a coupled-
mode representation of the field and a wide-angle, energy-conserving, 3-D parabolic approximation;
• recommendations have been made on reliability of predictions for various acoustic observables 
obtained assuming range-dependent ocean and disregarding horizontal refraction and effects due to 
ocean currents and time-dependence of the environmental parameters;
• a theoretical approach has been developed for calculation of the correlation function of the low-
frequency sound scattered by internal waves. This allows one to calculate error covariance matrix of 
the acoustic field in 3D inhomogeneous environment;
• a method of source imaging based on calculation of scattering matrix has been developed which can 
be used for visualizing and quantifying uncertainty associated with unknown topographic features in 
the shallow sea;
• uncertainties in the travel time of a transient acoustic wave scattered at a rough surface have been 
quantified.
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• Propagation of statistical moments of acoustic variables, when achievable, provides a very 

efficient alternative to Monte Carlo simulations when mapping environmental fluctuations into 

fluctuations of the acoustic field.

• Horizontal refraction decreases ray travel times and adiabatic mode phase. In shallow water, 

internal wave soliton-induced horizontal refraction can result in travel time biases O(10ms) at 

propagation ranges as small as 10 km. In deep water, at ranges about 1000 km horizontal refraction 

due to internal waves with the Garrett-Munk spectrum leads to acoustic travel times being O(10ms) 

less than in 2D simulations. 

• The magnitude of 3D acoustic effects associated with non-linear internal wave packets is very 

sensitive to the azimuthal direction of sound propagation and drastically decreases from its 

maximum value when the acoustic track deviates from an internal wave front by O(1º).

• Experimental data indicate that correlation radius of the acoustic field in cross-range direction 

at ranges O(4 Mm) is of the order of 500 m – 1000 m. These observations are successfully 

explained theoretically by internal wave-induced sound scattering.

• A full-wave theoretical description of the average acoustic filed has been developed and 

applied to estimate the role of 3-D effects at low frequencies.



15 - 17 June 2004Uncertainty DRI: Final Review Chantilly, VA

Scientific Results (2)Scientific Results (2)

• Small-scale surface roughness, which leads to multi-path propagation, always increases the 

average travel time of scattered waves as compared to travel time in the absence of roughness. 

Conversely, large-scale roughness, which does not change the number of specular points, 

typically results in a negative travel-time bias. For first arrivals, travel time bias is always negative 

and is controlled by the variance of surface slopes and elevations, respectively, for large and 

small-scale surface roughness.

• Different versions of the Garrett-Munk spectrum of internal waves, which are usually viewed as 

equivalent, result in drastically different values of environmental characteristics relevant to 

horizontal refraction of sound and, consequently, of predicted values of travel time bias and other 

acoustic quantities.  WKB-type simplifications of the Garrett-Munk spectrum, which are implicit in 

many internal wave models and sound scattering theories, prove inadmissible for quantitative 

description of random horizontal refraction. 

• Travel-time biases associated with sound refraction and scattering by unresolved  

inhomogeneities have important implications for various acoustic remote sensing techniques 

ranging from echosounding to ocean acoustic thermometry and tomography.


