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@ Bottom Property Parameter Sensitivity

 Model-data sensitivities are required to
construct an accurate picture of effect of
variability on acoustic prediction uncertainty

— Required quantities are the functional or Frechet

— Other quantities of interest are obtained from the
derivative chain rule

« Linearize about a global model minimum
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Linearization about Global Minimum

d =g(m)

~g(my -2 gn-my ).

d-d,=G(Mm-m,)

discrete |[d=Gm continuous |d = jG(x)m(x)dx

G= g_r?\ is an N x M matrix of Frechet derivatives
N = number of data
M = number of model parameters
N > M= overdetermined

M > N= underdetermined
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@ Data Resolution

- Assume we have found a generalized inverse ( G°) that
solves our problem in some sense

mest — G—gd obs
« How well does our model estimate fit the data?

dpre — G mest — G G—g dobs

data resolution matrix =G G° =N

N=I=d" =d** zero prediction error

N=I=d" #d* non-zero prediction error

 The N x N resolution matrix N characterizes whether the
data can be independently predicted or resolved
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@ Model Resolution

« True but unknown model m™ such that
G mtrue — dobs

« How close is a particular estimate m®* to m™° ?
mest — G—gd obs — G—g[G mtrue]: G—g G mtrue
— R mtrue

« R=GG isthe M x M model resolution matrix

R == model is uniquely determined
R # | = model is a weighted average of the true model

» Plots of the rows of the resolution matrix can be useful in
determining to what scale features can actually be resolved
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Trade-off of Resolution and Variance 1.

CT Scan Example
(a)

(b)/{ (C)F{

N

(b) Coarse discretization (c) Fine discretization
- overdetermined problem - underdetermined problem
- low resolution (large box) - high resolution (small box)
- low variance - large variance
(large # of measurements/box) (small # of measurements/box)
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Analytical Expressions for Partial Derivatives

d= Gm= 8_gm
om

og (ap aP]

om \ 0Ok 0Op

oP(z.tz,0) 1
ok(z)  K(z)

ap<;;t<;§s,o> pzl(z) { P@22,0)+= Pz, 0)*3(”}

. !z Z! can be computed from one pass of FFP or SAFARI/OASES or ...
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A Handful of Partial Derivatives

*If the source and receiver are assumed to be at the same
level z, the partials are simple functions of the depth
dependent Green’s function G.

2
P __w2ny oP_ 1[G _y2n2
ox~ x2.° op pZHaz] kXG]

*Derivatives with respect to sound speed ¢ and attenuation
o. are easily computed.

oP_

ac ok Cop oa

iCK} oP

@ ) Ok
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East China Sea - Continental Shelf
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Frechet Derivative 1

9P/dk(solid) oP/dp(dash)
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Frechet Derivative 2

~dP/ok(black) oP/dp(red) e At a grazing angle of
' ' 2 45 bulk modulus
perturbations have a
greater effect on the
measured pressure
than density, which
will be poorly re
resolved below 2m.
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Frechet Derivative 3

3.5kHz Grazing Angle = 45°

* The derivative for the
sound speed ¢ is much
larger than the derivative
for the attenuation a. This
Isn’t surprising considering
the 1/ dependence of
oP/oa..

Z (depth in meters)
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Frechet Derivative 4

3 5kHz Grazing Angle = 90° * At normal incidence oP/oc is

' = — identically 0. Pure sound speed
s | perturbations are forward
scattering. (This is why the
parabolic equation works so well
In ocean acoustics.)

* Note that the scale on the
abcissa is amplified by a factor
of 100 from the previous slide.

Z (depth in meters)
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Model Resolution
(4 Model Parameters, 6 Measurement Angles)

Fulford Model Resolution

* Angles: 1°, 157, 257, 45", 607, 90

* By the addition of more data,
the model parameters at the
water sediment interface can be
resolved.

0

b

Mucéel Parameter

* The model resolution matrix for an
over-determined problem is

EiA

" Model Parameter always diagonal.
[ T
0 Color Scale 1
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@ Data Resolution

(4 Model Parameters, 6 Measurement Angles)

Fulford Data Resolution

At progressively higher angles the
ability to predict the data degrades.

- Data not uniquely predicted by model
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* Conclusion: We have a model which
fits the data. However, our model is
not too good at predicting the high
grazing angle data.
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apt Model Resolution

(SEPES: Greg Anderson, Darrell Jackson)
(Mixed over/under-determined)

Model Resolution: dridBss ~ * Model: 44 scattering angles

» Data: 47 reverberation samples

el -
[[or L= e ST T T R Y L R

» Low scattering angles are well

resolved

- Lambert’s law: strong angular
dependence at low grazing angles

BSS - Grazing Angle

2
1
o

 Large grazing angles are poorly
__BSS — Grazing Angle ___ resolved

[
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- Lambert’s law: weak angular
dependence at high grazing angles
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apt Data Resolution
(SEPES: Greg Anderson, Darrell Jackson)

Dala Hesolution: dR/ABSS _« Haw well can we predict the data

from our model?

== o 0 - I | 1 0

=] - Reverb for low grazing angles is well
p predicted.

% ; - Reverb for high grazing angles is

= poorly predicted.

p

P
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« Conclusion: At high grazing angles
the data are not uniquely predicted
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@ Optimization Process for
Nonlinear Inversion Problem

(implemented in Fortran nonlinear optimization package SNOPT)

final inverted

model
parameters
|n|t|r§1(lc?euless Carrr]]i'gjte “forward model” candidate BLfi?rzaéSS
— ~lacoustic bottom model} "BL & BSS| "
parameters| |parameters results

i T derivatives of
candidate BL & BSS

A A

w.r.t model parameters

measured
BL & BSS

Feedback loop: minimize data misfit and meet constraints
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Mathematical Description

objective function = data misfit: B(¢) = { BL(0), BSS(0)

minignize (9 = (B(8) - B(8) )2 ==

constraint functions = BL & BSS bounds, param bounds, corr distance C:

‘lbnd, ] [B(¢;x)-B(g)| [ubnd,
subject to | !bnd, | < X < |ubnd,
lbnd ;| C(x) - ubnd , |
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Synthetic Input Data
(for both BL & BSS)

+ b T
W fir

Output from  Angle-independent  Additional (small Synthetic data

bottom model for  Gaussian noise, amplitude)
“target bottom” equal standard randomized
deviations at sinusoidal trend

all angles here

Real data only covers a small range of angles, but this synthetic data covers all 90°
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Example Inversion Results

freq = 1500Hz measured data 0.6m medium silt over muddy gravel

cO = 1545m/s initial guess 0.2m very fine sand over
muddy sandy gravel
BL Curves : init guess btm 20, meas btm 24 + noise BSS Curves : init guess btm 20, meas btm 24 + noise

measurec ®
initial guess ®
optimal soln =

measured = -207r
4 initial guess ®
aptimal soln ®

151

0 10 20 30 40 50 60 70 80 90 0 1o 20 30 40 50 &0 FO B0 90

grazing angle (deg) grazing angle {deag)
variable mean stdev
rho2 1.68956801 +/- 0.06893113
nu2 1.08795427 +/- 0.00834763
delta2 0.00893704 +/- 0.00295667

sigma2 0.00185622  +/- 0.00011848

d2 0.63765071 +/- 0.01389444
rho3 2.05942681 +/- 0.04665487
nu3 1.16064270 +/- 0.00550594

delta3 0.02120026  +/- 0.00698733

sigma3 0.00179095 +/- 0.00010520
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@ Exploring Uniqueness Issues

_ _ Sum-of-sgrs-of-normed-diffs between
Final cost function values final and target parameter vectors
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DEFINITIONS:
“Target bottom” — the one used to create synthetic data.
“Initial bottom” — the one used for the initial guess model parameters.

“Bottoms #1-33” — rock... gravel... sand... clay
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@ Correlation Matrix R of Solution Parameters

010rs Nedl dpPpPDlroOXimauOr]
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for the previous example inversion run an easier-to-interpret run
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Data Resolution Matrix at the Solution

N =GGT
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Caveats & Future Work

» This work inverts synthetic data — ultimately must
iInvert real data at arbitrary angles.

« Extend the problem to invert reverberation rather
than just bottom loss & backscattering.

« This work inverts only one frequency — ultimately
must invert multiple frequencies at once.

 Investigate uniqueness problem further by using
a global optimization technique such as genetic
algorithms or simulated annealing.
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ap

3 Sources of BL/BSS Variability

Each involves a Gaussian distribution with mean and standard deviation.
Sources of variability can be “turned off” by using mean & setting std dev to zero.

ASIAEX data
variations
in
measured
grainsize

!

measured
grainsizes

Global data

statistical
uncertainty
of grainsize
regression

!

grainsize
to
geoacous
parameter
regression

grainsize M, =
log,(r/ 1mm)

ASIAEX data

variations
in

sediment

thickness

geoacous
parameter
distribs

!

2 layer
gabim-
analytic
model

Monte Carlo runs sample those distribution 1000 times,

making 1000 pairs of BL & BSS curves which form the histograms.
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Statistical Uncertainty of
Grainsize Regression

desire continuity and correlated errors about mean fits Grainsize Algorithm Update

(Briggs, Jackson, Moravan)
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BL/BSS Curves and Their Histograms

==.5x0.8, & =2.5+x=, d2=1.5x0.7, =750, cl1=1500, r=1000

EL 2 BSS Histograms for = =

B45 ()

20 =0 =0 S0
grazitug angle (deg )

=20 =0 [=1u] [=1m]

grazing angle (deg )

B45 ()

=0 =0 S0
grazinng angle (oeg )

=40 =0 S0
grazitug angle (deg )

=0
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Results for Sources of Variability On/Off

4=, dzZz=1.5S=x0.7, =750, <l1=—15S00, = 1ooo0

Grainsizes = on
Regression = on =
Thickness = on

Grainsizes = off
Regression = on -
Thickness = off

Grainsizes = on ‘
Regression = off =
Thickness = off

1 oo
=o
=0
o
so
so
ao
=0
=0
10
o

=0, dzZz=—1.5x0.7, =750, cl1=—1500, ~N=1000
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o
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Regression = off =
Thickness = on



apt Conclusions - 1

* The Frechet derivatives are the sensitivity functions for the
model and data.

— Large derivatives = data are sensitive to the model

— Small derivatives = data insensitive to the model

« Fast efficient implementation permits:
— Rapid characterization of model/data sensitivities
— Investigation of model parameter coupling and model uniqueness.

— Experimental design (Resolution matrices are independent of
actual data values.)

— Quantitative characterization of nonlinear inverse solution by
linearization about global minimum.
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apt Conclusions - 2

» Application of Monte Carlo techniques to BSS/BL indicates
grain size material parameter regression is large source
of uncertainty.

« Comparison of BSS/BL from mean parameter values with the
histograms of BSS/BL illustrates nonlinearity of the model.
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% Seabed Variability (C. Holland lead): @

gas® June 2004 Review — 1
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*Publications:

- Odom, R.l., “Frechet derivatives for shallow water ocean
acoustic inverse problems,” (abstract), JASA, 113, p2191,
2003.

- Odom, “Model and data resolution for ocean acoustic for
ocean seabed inverse problems,” (in preparation for
JASA/IEEE-JOE).

- Ganse, A., Title TBD, content is on Monte Carlo studies (IEEE-JOE)
 Contributions:

-Construction of model and data resolution matrices from
analytical expressions for the Frechet derivatives.

- Large magnitude off-diagonal terms indicate model
non-uniqueness.
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ﬁ Seabed Variability (C. Holland lead): @
& June 2004 Review - 2

* Contributions continued:

- Important because the resolution matrices provide direct
information about data resolution and model uniqueness

- Valuable for experimental design

- Monte Carlo simulations for bottom reflection loss and
bottom backscattering (A. Ganse).

- Employs Frechet derivatives together with grain size
grain size information to show variability of BSS and BRL
with respect to grain size range.

» Seabed Team contributions:

- Beginning to quantify how depositional processes affect
acoustics by their control of grain size.
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s~ Seabed Variability (C. Holland lead): @

\.N & June 2004 Review - 3
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« Seabed Team contributions continued:
- Brought together quite a disparate group of individuals
with very different perspectives and cross-disciplinary
perspectives.

» Database weaknesses
- Bottom grain size data is extremely sparse (also noted by
J. Fulford).

- Yields large variances, and sometimes the data is so sparse
that it is impossible to compute a real variance. The
“engineering solution” to this problem is to use a variance
computed from other regions.

- Only real solution is to collect more data.
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