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System Architecture

METOC [ | MODAS/Dynamic
data inputs

models (Fox-clustering)

l_l

Internal Waves
(Levine, Reynolds)

Acoustic modeling TL, RL and
CASS/GRAB target sFrength
TL,RL, SIR pdf uncertainty -
Signal excess
(Eggen) :
uncertainty
T (LaCour)
GABIM
I Sonar echoes
Inversion |¢ and
Reverberation




gneertiing

- METDONM ., AR B &P
Inputs to Detection and Tracking System

m TS - Target Strength
mean TS level
m as a function of the bistatic angles for appropriate frequency band
characterization of variability (i.e. ping-to-ping fluctuation)
characterization of uncertainty (in mean levels)

m SL/RL/TL - Source Level, Reverberation, and Transmission Loss
mean RL/TL curve(s)

(one or more) averaged over processes whose characteristic time-scale is < operation
duration (e.g. internal waves, stochastic processes)

characterization of variability (i.e. ping-to-ping fluctuation)

m due to processes whose characteristic time-scale is < operation duration**
characterization of uncertainty (in mean levels)

m from processes whose time-scale is > operation duration (e.g. SSP, bottom type)

m NL/DT

m  Sensor Measurements

* assumes range dependent environment

** currently reduced to Gaussian independent of state, but this is not a fundamental limitation of the tracker
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Likelihood Ratio Detection and Tracking

m Tracking
Assumes target is present
Uses only sensor responses that are above threshold
Uses these responses to estimate state of target

m Likelihood Ratio Detection and Tracking (LRT)
Does not assume target present
Uses below threshold sensor responses
Determines
s Whether target present
m Target state if present
Bayesian form of Track-Before-Detect (TBD)



" S METROM AR W &

Mathematical Formalism for LRT

m Same as Bayesian tracking except

We extend the state space S by adding the null state ¢ to
represent the possibility that no target is present in the area of

interest.
m WeletS* = S Ef be this extended state space.

m We assume there is at most one target in the region so

that
p(0,f)+ Op(0s)s =1

S
m We define the cumulative likelihood ratio as

Lits) = PLS) Pr{X(t) = s | Observations to time t}
| pt.f) Pr{X(t) = f | Observations to timet }
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Mathematical Formalism Continued

m Measurement likelihood ratio for the observationY, = y

_ Lyls) _ Pr{Yy, =y|X(t)=s}
O 19)= Ly |f) Pri{y,=y[X()="f}

m This is the ratio of the likelihood of obtaining the

observationY, = y given target present at S to the

likelihood of obtaining the observation given no target
present.
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Simplified Likelihood Ratio Recursion

(Initial odds ratio) A(0,8) = P(0,5) forseS

p(0.¢)
Fork>1andseS,
(Motion Update) A (t,,5) =0 (] #) + [ a(s|s, DAt 15, 1) ds,

S
- L (Y, IS)
(Information Update) L (y, |s,) = =X
< L (Y [9)
Ay (tk |Sk) — L(yk |Sk)A_(tk’S)

(Logarithm Form) InA, (t |s,)=InL(y,[s)+InA(t,S)
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LRT Implementation Schematic

Velocity Sheets
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Velocity Sheet Example

Kinematic State Space: Velocity Sheets
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Goals and Approach

m Goals

Show that detailed performance prediction aides
likelihood ratio tracking

Demonstrate robustness in presence of large
environmental uncertainty

m Approach
Add detailed detection model to LRT
Add environmental uncertainty to LRT state space

10



- METROM AR @ &3
Multi-static Active Systems

m hydrophones dispersed
m target reflects blast wavefront

m reflection detected by
hydrophone receivers (human
D or DSP algorithms)

/ / m time of detection forms an
o ellipse of possible locations

/
/ \ m false alarms, clutter obscure
, -
w z Lo target detections
Q

S —

Measurement: series of echo times Y= (V.. Y, ¥,)
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Modeling Signal Excess

Sighal Excess Model (Mean Level)

Signal Excess Observations

Detection Model
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Variability and Uncertainty

Ocean Processes

Signal Excess Model

Signhal Excess Uncertainty and Variability

S _

Short Time Scale

* compared to operation timescale, O(1 hour)
** Gaussian approximation shown here
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Using SE in LRT

IASW Approach

Environmental Performance Prediction Approach
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Environmental Dimension

Environmental Performance Prediction Approach

“Delta” Discretization of Environmental Dimension
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Example: Improvement due to good detection
modeling

m  Simulation Parameters
RL / TL (Reverb / Loss)
m in situ SSP used
750 Hz / 500 Hz band
m Fulford Bottom Loss

TS: BASIS Bistatic Diesel Model

v

4 m/s
O

Variability: 8 dB (Gaussian)

Exercise Parameters
= 90 sec dwell time
= avg of 20 false alarms / ping / buoy
m Dblast order randomized

0000000 m Tracker Parameters
RL/TL
O O O O O O O O m MODAS SSP used
CNCHONONONONONG) 750 Hz / 500 Hz band
32 sonobuoys = Fulford Bottom Loss
TS: BASIS Bistatic Diesel Model
~70 km Uncertainty: -5 dB to 5 dB

Variability: 8 dB (Gaussian)
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Results: Cumulative Likelihood Example

Video
Curnulative Log Likelihood (Max) Cumulative Log Likelihood({Mazx)
IASYY Perf. Prediction Env. Ped. Prediction
00:00:00 00:00:00
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Results: Cumulative Likelihood Histograms

IASW Performance Prediction (150 realizations)
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SE mean prediction (dB)

Simulated Example (East China Sea)
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Example: Robustness to high Uncertainty
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Results (High Environmental Uncertainty)

Env. Uncertainty Dimension
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Results (High Environmental Uncertainty)
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Conclusions

m Use of performance prediction improves tracker performance
compared to IASW measurement likelihood ratio function.

m  Accounting for environmental uncertainty allows LRT to track in
cases of large performance prediction uncertainty.

Publications

m “Effect of Environmental Prediction Uncertainty on Target Detection
and Tracking” by L. D. Stone and Bryan R. Osborn, Proceedings of
SPIE conference on Defense and Security, April 2004

m This work will appear in the JUA issue on Sensor Performance
Prediction Analysis

22



