Funding Opportunity Announcement (FOA) for the Department of the Navy (DoN) Science, Technology, Engineering & Mathematics (STEM), Education and Workforce Program, administered by the Office of Naval Research (ONR)

These abridged abstracts provide a summary of research grants funded in association with the annual FOA.

FOA #N00014-20-S-F005

Building a Comprehensive Training Program for Developing and Sustaining the Ocean Acoustics Workforce

Dr. Jennifer Miksis-Olds, University of New Hampshire

Education in ocean acoustics, a national naval responsibility, is critical at all levels and necessitates programs that create a pipeline of personnel with the specialized acoustics training necessary to meet current and future national workforce needs. Education and training programs serving traditional students through formal university degrees and programs, and distance education and professional development opportunities will ensure the workforce remains adequately trained as new research and technology advance. The program is a three-component education infrastructure designed to improve ocean acoustics training at the University of New Hampshire (UNH) in the Northeast region and the nation. It will comprehensively serve the entirety of those requiring training: (a) residential university students seeking formal degrees and graduate certificates, (b) non-residential students seeking formal degrees and graduate certificates, and (c) non-traditional students, in particular naval personnel, seeking professional development opportunities in ocean acoustics. In addition, targeted efforts to ensure a diverse and inclusive student population is achieved will be a focus for the programs. Investment in ocean acoustic education is the emphasis of the proposed effort. However, other UNH programs of naval interest, such as mechanical engineering, ocean engineering, ocean mapping, oceanography, and marine robotics, will also be advanced, which will impact naval workforce needs.

Educational Approaches and Curriculum to Engage and Educate a More Diverse Cybersecurity Workforce

Dr. Meredith Carroll and Dr. TJ O’Connor, Florida Institute of Technology

Cybersecurity is a critical STEM field for military and civilian operations. In the U.S., the cybersecurity workforce lacks diversity, with only 14% female and 9% African American representation. The proposed effort will utilize a multi-disciplinary approach and team to develop, implement and evaluate an exploratory pilot project: an introductory cybersecurity training course for upper-level high school and college students with impactful STEM educational experiences. The course will integrate instructional strategies shown efficacious for cybersecurity education and effective in targeting underrepresented minorities. The outcome of this effort will be educational approaches and a pilot-program curriculum for an introductory-level cybersecurity course, empirically validated to increase learning outcomes, learner engagement, self-efficacy, interest, and intent to pursue a career in cybersecurity for underrepresented minorities.

EMPOWER STEM: Electronic Materials to Power a Naval STEM Workforce

Dr. Erin Ratcliff, University of Arizona

The overall goal of the program is to create a robust pipeline of scientists and engineers into the naval technical workforce. A proven network model comprising Navy scientists/mentors and University of Arizona affiliates—undergraduate and graduate students, faculty, and STEM coordinators and assessors—will collectively focus on the basic science and process engineering that underpins the development of new optoelectronic technologies. Through Navy partnerships, students will be trained to solve scientific and technological problems using a situated learning approach strategically aligned with multiple mentor-mentee relationships and industrial partnerships. Examples include opportunities for research and demonstration laboratory experiences that train students how to formulate “inks” of emerging technology materials, roll-coat prototype device platforms, and characterize optoelectronics devices, all in collaboration with “guide on the side” Department of the Navy (DON)/industry mentors. All events will culminate in the University of Arizona-hosted Summit on Printable Power Sources for Operational Naval Endurance, which will feature plenary talks from the DON to invited academic and industrial partners in printable optoelectronics. Collectively, the new DON engagement model will uniquely enhance the training of students and facilitate pipeline relationships that enhance the awareness of the increasingly diverse students in the possibilities of Department of Defense career opportunities in technology, basic or applied sciences.

Enhancing STEM Educational Experience in Marine Science and Technology with a Novel At-Sea Program

Dr. William Gilly, Leland Stanford Junior University

The STEM Experiential Approach to Critical Ocean and Atmosphere Science Topics (SEACOAST) Program will be developed through a partnership between the Naval Postgraduate School (NPS) and Western Flyer Foundation. SEACOAST, which targets secondary and post-secondary students, uses the modernized Western Flyer—a historic vessel, as an at-sea platform based in Monterey, CA; and will implement experiential learning programs aligned with naval priorities in maritime research, provide professional development for teachers and informal science educators, and promote community engagement with naval scientists and active duty personnel. SEACOAST operations on the Western Flyer will involve both short-duration (1-day at-sea) programs designed to explore a specific ocean science topic, as well as project-based activities involving several at-sea days with participants developing original hypotheses and approaches. The Western Flyer will be equipped with research-grade instrumentation, and both types of learning experiences will facilitate engaging with this technology as part of understanding the scientific process. NPS-led instruction and mentorship will facilitate in-person contact with students and highlight naval career pathways to a diverse community.

Equity-Forward Workforce Development Pipeline for Naval STEM Superiority

Dr. Daniel H. McIntosh, University of Missouri – Kansas City

The program aims to help faculty expand their capacity to provide students from diverse backgrounds with meaningful research and workforce experiences aligned with Navy STEM priorities. This aim will be accomplished by developing four competency-based Research Skills Training (RST) courses and internships in cybersecurity, unmanned aerial systems, RF simulations, and remote sensing at the University of Missouri – Kansas City (UMKC). The pipeline linchpin will be a common RST framework to provide students hands-on technical and career workforce preparation. The pipeline will benefit STEM-interested students with (a) 15 weeks of data analytics and technical skills training in a Naval STEM area, (b) faculty mentored research experiences, (c) internship programming through UMKC Career Services, and (d) exposure to Naval STEM opportunities and careers. The RST framework benefits STEM faculty with an effective student training and intern vetting system implemented in the STEM curriculum to achieve enduring sustainability. The program will broaden participation through inclusive recruitment, RST tuition scholarships, and paid research internships to boost recruitment, persistence, and career aspirations of underrepresented STEM students. The program outcome will be increased numbers of applications to Naval lab/industry internships and careers and a scalable, equity-minded pathway for sustainably cultivating a diverse, world-class STEM workforce.

Fostering Naval STEM Workforce through Hands-On and Autonomous Robotics Education and Competitions

Tarek Shraibati, Robotics Education and Competition Foundation

The preparedness of young Americans for STEM military careers is of concern. Like much of the technology industry, the Department of Defense is struggling to increase technological capabilities due to the lack of general STEM literacy and 21st Century skills, such as leadership and decision-making skills, amongst its workforce. The project will promote familiarity with military and civilian technical career opportunities that align with naval workforce needs by creating career alignment with current VEX STEM Labs. A guiding principle behind the project is that one-time events such as camps or after-school programs are insufficient in creating long-term impact on student interest. The project aims to create a STEM ecosystem that develops, fosters, and sustains student interest in STEM and STEM careers. The Robotics Education and Competition (REC) Foundation utilizes the VEX Robotics platform. Past evaluations of VEX programming have shown that exposure to STEM subject areas before college drastically increases the number of students entering STEM fields. Both students and teachers will be evaluated to measure gains in STEM confidence and interest.

GoSense: A Hands-On Introduction to Sense & Sense-Making

Lindsey Groark, RoboNation, Inc.

The program aims to address the need for flexible STEM programming to support educators, students, and parents. GoSense is a series of build-it-yourself environmental sensor kits designed for construction and use in real-world projects. By building, deploying, and analyzing data from these sensor kits, students will be introduced to the naval science and technology priorities of sense and sense-making and explore the world of sensors, big data, computer science, environmental sensing, and various engineering fields. GoSense kits are developed for deployment in various marine, air, and land environments. They will be enhanced by educational and program support resources, a virtual community, as well as a robust citizen science framework for use in pilot programs across the United States. Additionally, inclusive, annual stakeholder convenings will focus on identifying barriers and improving access to meaningful participation for underserved and underrepresented communities. Through the incorporation of physical sensing platforms, hands-on and virtual educational resources, and experiential learning opportunities, participants will garner a unique perspective that will open a variety of STEM pathways for continued learning and engagement.

Growing STEMS: Training the Next Generation of Engineers for the Naval Workforce

Dr. Michelle L. Pantoya, Texas Tech University

The Growing STEMS Partnership (GSP) goal is to recruit, educate, inspire, and train a diverse student population and assist their transition from academia into naval employment through project-relevant, experience-centered activities. The GSP formalizes ongoing collaborations between academic researchers and educators, and naval lab scientists; and focuses on engineering training with an emphasis on energetic materials education. The learning model includes student project-based education, research-centered student training, and student induction in the naval workforce through Department of the Navy (DON) internships. The program addresses a problem for engineering students that lack meaningful integration of math and science content into engineering design because real-world problems motivating the engineering design are often missing from the hard sciences. Within the GSP, the purpose motivating joint research elicits student interest, engagement, and a deeper understanding of STEM content. The GSP will build an educational pipeline into the DON Enterprise by establishing the real-world context, motivating the learning environment while also expanding student opportunities for training, mentoring, and transitioning into DON employment.

Improving STEM Pathways through Realistic Scenarios, Analysis & Design, and Hands-On Experience: A Pilot Curriculum for Hypersonic Systems

Dr. Thomas Corke, University of Notre Dame

Hypersonic technologies, especially the ability for powered and sustained hypersonic flight in the atmosphere, holds the promise for revolutionizing civil and military intercontinental transportation. Mission complexity requires a multidisciplinary approach with a system-of-systems perspective that bridges aerodynamics, propulsion, materials and structures, sensing and communication, flight control, as well as atmospheric science and cybersecurity. The technological breadth and fascination of hypersonic flight makes this an engaging topic for students at all levels. The program at the University of Notre Dame (ND) will create a STEM pathway based around hypersonic systems that will utilize state-of-the-art pedagogical techniques to motivate broad scientific pursuits. The effort will incorporate existing courses and hands-on laboratory experiences in the ND College of Engineering, and develop special topics courses that emphasize multidisciplinary hypersonic systems design. An emphasis will be placed on web-based dissemination of lecture material and laboratory experiences. Collaboration with the Naval Surface Warfare Center Crane and Navy Test Pilot School will expose ND students across engineering departments and Navy ROTC program to real-world challenges and engagement with Navy STEM professionals and their careers.

Locally Sourced: Developing College-to-Career Pathways for Engineering Technicians at Naval Base Ventura County.

Dr. Scarlet Relle, Moorpark College, California

The project provides concrete pathways to workforce opportunities for demographically diverse United States citizens interested in careers as engineering technicians—particularly for uniformed and civilian positions in and around Naval Base Ventura County. The project will use newly developed certificate programs in Electronics Engineering Technology and Mechatronics Engineering Technology to start students on a directed, three-semester path that will include opportunities for paid internships with the three warfare commands housed at Naval Base Ventura County and companies throughout the region. This path will lead qualified students to work at the base or base-related employers or to transfer to California State University, Channel Islands to complete a four-year degree. The project will also provide students with the 21st-century job skills necessary for workplace success. The proposed project extends into the local high school community to expand familiarity with STEM careers, including naval programs and careers. Naval Base Ventura County will benefit from a supply of qualified individuals who have deep ties to the region and will be able to perform component and systems level maintenance on defense systems, surveillance and reconnaissance sensors, and other electronic subsystems.

Navy Engineering Innovation and Leadership (NEIL) Training Program for Diverse STEM Peer Leadership

Dr. Razi Nalim, Indiana University

In partnership with Naval Surface Warfare Center, Crane Division (NSWC Crane), Indiana University - Purdue University Indianapolis (IUPUI) will establish the Navy Engineering Innovation and Leadership (NEIL) program to develop engineering and computing student leaders to be adept at innovation in the Navy priority areas of operational endurance and of sensing and sense-making. With special attention to female and underrepresented students, IUPUI will expand a program to hire high-achieving undergraduates to assist in teaching challenging subjects using the Peer-Led Team Learning (PLTL) approach and enhanced leadership coaching. NEIL scholars will be trained to work as peer leaders in engineering and computing courses or for specific student groups, mentored to perform laboratory research or gain industry experience, and engaged in diversity-outreach programs. The program will accelerate college completion for diverse engineering students while equipping them with the skills necessary for successful careers as Navy civilian scientists and engineers. Faculty will conduct research to identify best-practice methods for evaluating student preparedness for defense careers, STEM learning improvement, and leadership and innovation skill development.

Promoting DON STEM Careers via STEM Educational Activities

Dr. Edward Davis, University of Auburn

The program aims to leverage the values, motivations, and goals of diverse Generation Z students in Alabama to engage their interest in pursuing STEM careers relevant to the Navy. A science curriculum that emphasizes the importance of STEM in students’ communities and how a STEM career in the Navy can address critical societal challenges will be developed. Collaboration with high-school STEM teachers during development will ensure that educational activities are appropriate to their needs and constraints and increase the likelihood of adoption by other educators. The project team will favor low-cost hands-on and virtual activities to enhance adoption further and enable use in remote and non-traditional settings. These activities will highlight the role of STEM in solving naval challenges and the positive impacts of DON STEM careers on American and global society. In addition to classroom curricula, developed activities will be presented by active and retired DON personnel at area festivals and community events, further enhancing knowledge and interest in naval STEM pathways among students and their families.

FOA #N00014-19-S-F003

Inspiring Students to Pursue U.S. Navy STEM Careers through Experiential Learning

Dr. Brian Kish, Florida Institute of Technology

The overall goal of this program is to inspire, engage and educate K-12 and college students about Navy missions through diverse, experiential-learning programs. Faculty from flight test, aerospace, aviation, ocean engineering and project-based learning will craft outreach campaigns, laboratory courses and summer camps designed to break through modern students’ addiction to virtual experiences and devices. The selection of topics and instructors will be custom-tailored to encourage, promote and sustain naval science and technology efforts. The goal is to have students of all ages and backgrounds touch and operate real air, sea and space systems and to solve worthwhile engineering challenges. Students will actually fly in aircraft, ride on boats, operate satellite simulators, and build, test and break robotic systems. The team will monitor the effects of the innovative educational program initiatives by repeatedly interviewing students to measure their motivation to pursue further education in STEM and their interest in career paths relevant to the Navy.

Naval STEM Program at California State University Los Angeles

Dr. Mark Tufenkjian, California State University Los Angeles

This program aims to increase the pipeline of high-quality STEM graduates who enter the Navy’s Southern California workforce equipped with relevant naval knowledge and skills. The program focuses on providing underserved and underrepresented student populations (e.g., Hispanic minorities, women, military-connected students) at California State University Los Angeles access to STEM education opportunities and a pathway to naval STEM careers. The Navy benefits by improving the quality, quantity and diversification of its future workforce, in order to sustain its technological superiority across its missions. Repeated exposure to and engagement in organized naval-relevant activities throughout a student’s undergraduate education (freshmen through senior year) will inspire them to pursue STEM careers with the Navy upon graduation. Activities include a hands-on summer program for high school female students, a program to support California State University Los Angeles’ military-connected students, enhancements to California State University Los Angeles’ Autonomous Underwater Vehicle student organization, and a new curriculum in Artificial Intelligence and Data Science.

Problem-based Initiatives for Powerful Engagement and Learning In Naval Engineering and Science (PIPELINES)

Dr. Maria Teresa Napoli, University of California Santa Barbara

Problem-based Initiatives for Powerful Engagement and Learning In Naval Engineering and Science (PIPELINES) engages community college and undergraduate students who, working in teams embedded at Navy facilities, compete in designing innovative, effective solutions to Navy science and/or engineering problems. The expanded program includes an academic year component, in addition to the summer project, further reinforcing working ties between the University of California Santa Barbara and naval partners; this will enable research collaborations to extend beyond the summer months. The team-based structure and open-ended nature that characterizes PIPELINES projects supports students’ creative thinking, further developed by training in innovation and aligned with the Naval STEM Strategy.

Shaping Experiential Research for Veteran Education (SERVE)

Dr. Bruce LaMattina, University of Tennessee

The primary objective of Shaping Experiential Research for Veteran Education (SERVE) is to provide opportunities for our military veterans to gain research experience and to eventually earn graduate degrees in STEM fields to fill the Navy’s pipeline. Many veterans continue to have a desire to serve and protect the nation, while the Navy needs leaders with research experience. Likewise, research outcomes are improved by having veteran students bring “user experience” to Navy research projects. In this effort, the University of Tennessee, in partnership with the University of North Carolina at Charlotte, will (1) recruit veterans into undergraduate and graduate programs, (2) provide research training aligned with Navy research and development priorities, and (3) aid in workforce placement. The grant will provide undergraduate research experiences, graduate projects and student exchanges between the University of Tennessee, the University of North Carolina at Charlotte and the Navy. Enabling this effort are strong collaborations with the University of Tennessee’s Veteran Resource Center, Navy partners, national labs and defense contractors. Finally, a mentoring network will be developed that will promulgate through the entire program to increase graduation rates, improve research experiences and outcomes, and develop better leaders.

FOA #N00014-18-S-F003

Broadening Education in Naval Science & Technology with an Expanded Undergraduate Curriculum and Learning Community

Dr. James Buchholz, University of Iowa

A major expansion to our Naval Hydrodynamics certificate program is undertaken to produce a much broader Naval Science & Technology certificate with an added emphasis on autonomous naval systems.  To support students in the curricular program while increasing informal participation of a broader range of students, program development will integrate an extra-curricular learning community, anchored by a student organization focused on development of autonomous marine craft. Outreach activities will introduce Midwestern high school students to modern naval science & technology concepts and challenges, and build a brand for our program.  The project supports the 2018 National Defense Strategy by enhancing civilian workforce expertise, fostering the development of advanced autonomous systems, and promoting a culture of innovation and performance in our graduates through challenging experiential learning activities and the development of leadership skills.

Creating a Coastal Carolina Cyber Workforce Education and Awareness Pipeline for National Security (C4WEAPNS)

Dr. Stanton Greenawalt, Horry-Georgetown Technical College

In partnership with the Naval Information Warfare Center (NIWC)-Atlantic, Horry-Georgetown Technical College (HGTC) will establish a Security Operations Center (SOC) and Cybersecurity Forensics Lab for student hands-on development and mastery of the knowledge, skills and abilities (KSAs) required for positions in defense and industry. This enhanced lab environment will be augmented by new and expanded certificate and degree programs in Cybersecurity and Forensics. Curriculum will be harmonized with the National Initiative for Cybersecurity Education (NICE) framework to prepare graduates to successfully evaluate risk tolerance and the complexities of cyber-attacks, work within teams, and set organizational priorities for risk management.

Low-power, miniaturized Radio Frequency components for wireless communications and sensing systems to engage a broad cross-section of students for Navy-relevant STEM careers

Dr. Anupama Kaul, University of North Texas

Historically, a hallmark of the U.S. Navy’s electronic warfare technical leadership has been well-rooted in Radio Frequency (RF) engineering. The North Texas- (NT-) Navy STEM Coalition (NSC) will enable a dynamic program aimed at engaging students in the STEM disciplines broadly, with a particular Naval focus on RF engineering and RF microelectromechanical system (MEMS) components for wireless communications and sensing systems. The NT-NSC proposes three educational tasks and one research task over the course of three years to provide a balanced experience for students in this program in order to integrate education, training and research. The four tasks will engage middle school, high school, Navy Junior Reserve Officer Training Corps (Navy-JROTC), community college, undergraduate and graduate students in the core foci of the program which are: curriculum development, mentoring and training activities, diversity initiatives, and sparking interest in research for students to pursue more advanced graduate degrees in the STEM fields.

Minor Certificate Program in Computational Naval Sciences to Enable NAVAL STEM Careers

Dr. Prashant Khare, University of Cincinnati

The overall goal of this program is to train the next generation STEM workforce to maintain U.S. Navy’s technological superiority across all its missions. This will be accomplished by identifying STEM needs in the context of computation-based science and technology careers in the U.S. Navy, and developing an exploratory self-sustaining computation-centric certificate program at two universities, University of Cincinnati and Old Dominion University. Specifically, we will address the ever-increasing demand of computational science enabled workforce in autonomous systems, artificial intelligence, and fluid & combustion sciences. A variety of Naval applications will be used as case-studies such that future Navy recruits will be exposed to, and become proficient in understanding and solving Navy-specific technical challenges using computational approaches.

Retooling Veterans with Service- and Combat-Connected Disabilities in Advanced Virtual Engineering

Dr. Mesbah Uddin, University of North Carolina, Charlotte

This program aims at providing graduate level education and training to veterans with disabilities in the areas of “advanced design and analysis using high performance computing” by augmenting the existing Masters of Science in Mechanical Engineering graduate program at UNC Charlotte’s College of Engineering with two additional navy/defense-application oriented, project based applied coursework, and applied-research based dissertation/thesis work along the same line. The veteran participants in the program will be taught first the fundamental principles of computational design and analysis, and then they will be transitioned to the practical product design process. The curriculum is designed as such that the graduates from this program can easily adapt themselves into other career opportunities as information technology experts, data scientists, and computer programmers, which are among the critical areas of HQP need as identified in the 2018 National Defense Strategy (NDS). Though the program is tailored primarily towards retraining of veterans, the Naval application related coursework and research projects will be open to all U.S. nationals which will enable the Navy and DoD to have access to a larger pool of U.S. national talents trained in Virtual Engineering or in Engineering using Advanced High Performance Computing.

STEM Education Network for Sensor Research (SENSOR) Pilot

Dr. Mark Moldwin, University of Michigan

STEM Education Network for SensOr Research (SENSOR) is an innovative and new program at the University of Michigan that engages science and engineering undergraduates in a variety of research, educational, mentoring, and career exploration experiences focused on sensors and algorithm development. The SENSOR program includes (1) a summer engineering laboratory project for underrepresented Engineering students, (2) a 10-week summer research experience program working with sensors in a variety of contexts, including autonomous vehicles, robotics and space engineering and exploration, and (3) professional development opportunities including those around Navy-related STEM careers. In addition, SENSOR will develop a larger cohesive STEM education and training program engaging 11 universities as part of the NASA Michigan Space Grant Consortium to connect the broader regional sensor community.

Workforce Development Pipeline for Microgrid and Advanced Power Systems Careers

Dr. Nathan Johnson, Arizona State University

Eight training programs in microgrids and advanced power systems will create a pipeline of skilled personnel including Navy scientists, engineers, technicians, Veterans, and active-duty and their dependents. The breadth of programs begins to inspire and engage K-12 students, continues with advanced training in university/college institutions to educate and attract, and extends to on-the-job workforce initiatives to support employment, development, and retention. Over 1,200 people are expected to directly benefit from training, with more to benefit indirectly through a train-the-trainer program. Training will be delivered online, hands-on at the Arizona State University Microgrid and Grid Modernization Test Bed, and at Naval installations in the U.S. Southwest.

* Some pages on this website provide links which require a plug in to view.