Naval Research and Development

A Framework for Accelerating to the Navy & Marine Corps After Next
“The Navy must get to work now to both build ships, and to think forward - innovate - as we go. To remain competitive we must start today and we must improve faster”

“The Future Navy”
Admiral John M. Richardson
Chief of Naval Operations

“Any monopoly we might have on ‘breakthrough’ systems will likely be short-lived.”

“U.S. Marine Corps Operating Concept”
General Robert B. Neller
Commandant of the Marine Corps
Maritime superiority for America’s Navy and Marine Corps is enabled by technological superiority. However, our once-dominant technological edge is at risk of being overtaken due to the accumulated friction of complexity and bureaucracy in our system of research, development, and acquisition. Lasting strategic advantage comes from institutional capacity to develop and field new capabilities faster than our adversaries.

The Secretary of the Navy, Chief of Naval Operations and Commandant of the Marine Corps have challenged the research and development (R&D) community to find ways to accelerate technology development and delivery to our naval forces. There is broad consensus that the current pace of technology development and adoption is unsatisfactory, and that without significant reform, we will lose the competition for maritime superiority.

To win, we must be first to field decisive capabilities.

As a first step, this new Framework will serve to better synchronize the continuum of naval Research, Development, Test and Evaluation (RDT&E). Three components of this Framework—Align, Allocate and Accelerate—will guide the conversation and efforts: we must align early research, development and demonstration to priority technology requirements; allocate investments for higher payoff in lethality, integration and interoperability; and accelerate capability adoption to match the pace of technology innovation.

Why a Framework? By its nature, R&D is not a deterministic system—it is exploratory for the purpose of new knowledge and invention; therefore, a “plan” or “strategy” falls short as a guiding mechanism to connect Department of the Navy (DON) research activities. We need a new, faster way to align, allocate and accelerate scientific discoveries to naval programs of record and deployment as new capabilities. This Framework is offered as a charter for change and a call to action. As a charter, it outlines key issues for leaders to address and a consistent vision for innovators to achieve. As a call to action, it challenges all hands in the naval R&D community to rise above traditional boundaries, collaborate on shared priorities and focus our work together on a singular customer—the naval warfighter.

Subsequent steps to effectively implement this vision must endeavor to inclusively draw upon the knowledge and diversity of thought resident within the R&D community. Additionally, overcoming existing institutional barriers and breaking free from bureaucratic drag requires equal commitment to speed organizational innovation—our national security is at stake. With this Framework, our implementation will challenge old assumptions and reimagine possibilities.

When successful, naval RDT&E investment will be managed collectively as a coherent portfolio. We will fully invest in research areas unique to naval warfare, while exploiting new scientific discoveries and technological opportunities at large. We will take more risks earlier in technology development and transition more capabilities to programs of record. In short, we will be more agile and effective at delivering decisive warfighting advantage to our Navy and Marine Corps.
CORPORATE BOARD DIRECTIVE

We are in a competition for maritime superiority; one we must win. Our Sailors and Marines depend upon technological advantage to protect the homeland, build maritime security, project power and win decisively.

Our Navy and Marine Corps’ strategic advantage, therefore, depends upon accelerating the cycle of technology development and fielding of new capabilities—faster and better than our adversaries. However, the rapid advance of technology globally has outstripped our traditional institutions’ ability to keep pace. Status quo is unacceptable.

Consistent with the Navy’s “Design for Maintaining Maritime Superiority” and the “Marine Corps Service Strategy 2016,” a more integrated approach to research and development (R&D) is needed. This new Framework aligns R&D priorities, allocates resources and accelerates execution to speed the adoption of new capabilities for the DON.

THE CHALLENGE

Our technological advantage is diminishing as our pace of technology development and adoption is slowed by outdated behaviors and incentives. These institutional factors create drag and encourage risk aversion at the cost of innovation and agility. Lacking common priorities for decision-making across the RDT&E continuum, the allocation of vital resources is sub-optimized. Consequently, fragmented decision-making diffuses strategic direction and erodes the will to kill underperforming technologies. “First to field” decisive capabilities, is our goal.

WAY FORWARD

The defining attribute of future naval forces is SPEED—not only in operations, but in DON decision-making and business execution. We must be responsive to the accelerating pace of technology development and create pathways that will result in the timely fielding of new naval capabilities. It requires bold leadership and immediate action to attack this problem with the same intensity we bring to the battlespace.

To win, this Framework:
• Aligns naval research, development and acquisition to shared priorities
• Allocates resources to speed priority-aligned results to the warfighter
• Accelerates capability delivery by streamlining business execution and empowering people

Building on our strong foundation of research, talented people and partners in government, academia and industry, these actions develop evolutionary and revolutionary capabilities while reducing cost and increasing speed.

Accordingly, the Chief of Naval Research is charged with leading further development and execution of this Framework with Program Executive Officers, Systems Commanders, Resource Sponsors and other key stakeholders.

(The RDT&E Corporate Board comprises the Under Secretary of the Navy, Vice Chief of Naval Operations, Assistant Commandant of the Marine Corps and the Assistant Secretary of the Navy for Research, Development and Acquisition)

Our course is set: Accelerate to the Navy and Marine Corps after next!
RATIONALE FOR A R&D FRAMEWORK

Four enduring naval functions are critical to maintaining maritime superiority: deterrence, power projection, sea control and maritime security. Increasing volume, speed and complexity of threats demands a naval force fully interoperable, integrated and more lethal. This begins with basic research and proceeds along a fully synchronized RDT&E continuum with agility to pursue new breakthroughs at the rapid pace of discovery and technology development.

Unfortunately, advantage is yielded daily to adversaries through the accumulated drag of budgetary, organizational and acquisition practices. This drag limits our ability to absorb fast-maturing technologies and implement new capabilities. While formed from good intentions, it has become the antithesis of agility, responsiveness and decisiveness.

Lasting maritime superiority for America’s Navy and Marine Corps requires continuously outpacing adversaries’ cycles of technology development and adoption. This Framework aims to expand DON’s total capacity for capability adoption by targeting both technology development and delivery activities. Technical leadership is gained to the extent institutional friction is minimized. Current bureaucratic drag factors and key issues plague progress and jeopardize future maritime superiority; they must be addressed.

KEY ISSUES

• Structure and cadence of budgeting activities drive near-term, fragmented decision-making and foster a protectionist mindset at the expense of strategic program effectiveness

• Lack of R&D priorities to guide and align investment/kill decisions sub-optimizes outcomes, slowing the maturation and delivery of needed capabilities

• Prototyping, experimentation and demonstration are misallocated in acquisition vice earlier in development incurring programmatic risk in cost, schedule delays and performance shortfalls

• Organizational bureaucracy and administrative churn associated with the complexity of acquisition rules stifle agility and innovation, and promote splintered governance over an integrated portfolio perspective

TAKEAWAYS:
Maritime superiority requires outpacing adversaries. The RDT&E status quo is inadequate to keep pace with technology innovation. This Framework identifies key issues and barriers jeopardizing our future advantage.
GAINING COMPETITIVE ADVANTAGE

Maritime superiority is enabled by technological superiority. As the competition for superiority escalates, competition to field new technology-based warfare capabilities intensifies at a corresponding rate. Now more than ever, the competition from research to technologies to capabilities is dynamic, disruptive and intense. The nature of this competition is driven by four fundamental trends that, if mastered, also present opportunities for competitive advantage:

Emerging Power of Data
Data is trending towards universal collection on a continuous basis. Amassing, sharing and understanding vast data offers great potential. Advances in data collection, storage and analytics, computing devices, networking, and autonomous processing and decision-making are disruptive, but also offer advantages.

Opportunity
Engage with academia and industry experts on the cusp of this frontier to unlock the sea of data for enhanced insight, rapid decision making and new mission capabilities.

Global Access to Technology
The commoditization and proliferation of technology offers unfettered access by competitors around the world. Barriers of cost and complexity that historically limited access to advanced technologies are decreasing. Anyone (friend or foe) is a potential user and/or innovator of high-tech capabilities.

Opportunity
Leverage our network and enhance research partnerships across industry and academia to rapidly absorb new technology for competitive advantage.

Expanding Technical Foundation
The technical foundation of R&D—the underlying science—is growing exponentially. Every new discovery invites follow-on innovation within that discipline. More importantly, the opportunities for cross-discipline innovation and breakthroughs also increase.

Opportunity
Exploit the multi-disciplinary dimension of discovery to create greater potential for disruptive innovation.

Faster Development & Adoption of Products
The pace of commercial technology adoption is accelerating. The time for new products to be developed and adopted is decreasing and new capabilities are reaching users (friend and foe) at an increasing rate.

Opportunity
Grow core research in National Naval Responsibilities while gaining organizational competencies to fast-follow and leverage other investments by industry, academia and DoD.

These trends foretell the future for technological superiority. They already stress our organizational systems and processes, which served us well in a less complex competitive environment, but today, diminish our effectiveness. We must adapt to win. Competitive advantage belongs to the naval force that best captures the power of data, leverages the global technology base, disruptively innovates across technical disciplines, and develops/adopts new capabilities at the speed of innovation.

TAKEAWAYS:
The competition is to be first-to-field decisive capabilities. This Framework charts a pathway to increasing competitive advantage. It leverages fundamental trends that give rise to threats, to also create new opportunities.
The criteria for victory is clear: rapid fielding of new capabilities that are adaptive, autonomous, defensible, scalable, efficient, fast and especially, lethal. The Fleet and Force face growing complexity of threats, which we will not defeat by simply out-spending. Success necessitates speed of innovation, agility and adaptability. The way forward is equally clear: we must urgently Align, Allocate and Accelerate naval R&D to deliver technology-enabled capabilities faster.

ALIGN – R&D to Shared Priorities

To gain the efficiency and effectiveness needed to win, there must be DON-wide alignment in commitment and execution. The future force attributes necessary for the Navy and Marine Corps After Next are reflected in the following Framework Priorities. These Priorities are the aligning mechanism that guides investment across the warfighting domains and yields cross-domain synergies. Alignment is critical across the entire naval R&D community, including the Department of Defense, industry, academia and non-profit partners.

<table>
<thead>
<tr>
<th>PRIORITIES</th>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented Warfighter</td>
<td>• Enhance decision-making speed and quality</td>
</tr>
<tr>
<td></td>
<td>• Improve human-machine interfaces and teaming</td>
</tr>
<tr>
<td></td>
<td>• Mitigate tactical-level risk to our people and command, control and communications degradation</td>
</tr>
<tr>
<td>Integrated & Distributed Forces</td>
<td>• Enhance dynamic, synchronized actions across forces</td>
</tr>
<tr>
<td></td>
<td>• Support collaboration spanning geography, domains, platforms and joint partners; leverage satellite and Precision Navigation and Timing advancements</td>
</tr>
<tr>
<td></td>
<td>• Increase flexibility and reach of the naval force through incorporation of autonomous and disaggregated systems</td>
</tr>
<tr>
<td>Operational Endurance</td>
<td>• Enable maneuverability, efficiency and resiliency for sustained operations by warfighters, systems and platforms (regardless of the threat or operating environment)</td>
</tr>
<tr>
<td></td>
<td>• Improve platform-level energy storage/efficiency for propulsion and weapons systems</td>
</tr>
<tr>
<td></td>
<td>• Develop wide-area and force wide disinformation deception and decoys</td>
</tr>
<tr>
<td>Sensing & Sense-Making</td>
<td>• Transform vast data into timely knowledge</td>
</tr>
<tr>
<td></td>
<td>• Enable persistent awareness and understanding, and optimized operation (regardless of the threat or operating environment)</td>
</tr>
<tr>
<td></td>
<td>• Integrate artificial intelligence into C4ISR networks scalable to theater wide</td>
</tr>
<tr>
<td>Scalable Lethality</td>
<td>• Enable offensive and defensive actions that are multi-domain, integrated, cost-effective, and kinetic and non-kinetic</td>
</tr>
<tr>
<td></td>
<td>• Deliver directed energy and low cost, high probability of kill standoff strike</td>
</tr>
</tbody>
</table>

DESIRABLE OUTCOMES:
Framework Priorities translate future force attributes into actionable objectives. Priorities are the aligning mechanism that guides decisions from research to acquisition. Streamlined business of R&D accelerates prioritized execution.
HOW TO WIN continued

ALLOCATE – Resources to Speed Results

A balanced R&D investment portfolio is a hedge against future uncertainties. Consistent with alignment to the Framework Priorities, this investment portfolio must be managed with a DON perspective. While priorities guide choices, informed decisions guide allocation balance. Portfolio allocation decisions must consider the following factors:

TECHNOLOGY-UNIQUE TIMELINES

Science emerges and technology matures at varied speeds. R&D investment decisions must take into account each technology’s timeline and create appropriate pathways for timely capability adoption. Required: Greater agility in the business of R&D to respond to emerging opportunities.

EVOLUTIONARY AND REVOLUTIONARY CAPABILITIES

Evolutionary capabilities incrementally improve existing capabilities; they are generally easier to incorporate into the current naval force. Revolutionary capabilities produce game-changing impacts; however, they push the boundaries of science, have an increased risk of failure and may be disruptive to incorporate into the naval force. Required: Institutionalized methods to rapidly deliver new technologies that are in advance of requirements.

RESOURCE EFFICIENCY

Balanced investment across R&D (from basic research to operational system development) is critical. Each phase complements and depends on the others. Broad-based basic research provides a foundational core that is as important as transitional engineering to getting a capability into the field. Access to the best talent, across industry, academia and government is critical. Required: Flexible RDT&E investment, lean processes and a simplified regulatory environment to accelerate results and make DON a preferred partner for innovative businesses, universities and our nation’s best talent.

TECHNICAL LEAD vs. FOLLOW

Finite resources do not permit us to lead research in every technical discipline. We lead those areas critical to naval warfighting or where the naval force has a unique requirement or use. We fast-follow and/or leverage expertise in other areas common among service partners or commercial interests. Required: Resource core National Naval Responsibilities and technical disciplines unique to naval warfare to ensure world-class leadership.

APPROPRIATE ALLOCATION OF RISK

To optimize investment in new warfighting capability we must resolve technical risk as fast and as early as possible. This is achieved by separating technology development from product development and conducting enhanced prototyping, experimentation and demonstration prior to acquisition commitment. Required: Distinguish R&D from acquisition to accept greater risk in development, streamline business and speed execution.

The future is uncertain and winning is essential. Addressing these factors enables DON to rapidly respond to a more dynamic threat environment and accelerate new capabilities to the warfighter.

DESIRED OUTCOMES:

Priority-driven investments optimize allocation and hedge against uncertainties. The Framework allocates resources to resolve technical risk earlier in development. Effectiveness requires the latitude to respond to factors affecting balanced allocation.
ACCELERATE – Technology-Enabled Capabilities

In warfighting, as in business, there are inherent advantages to being first; and there are significant costs to being second. Being first and best to field capability results from an integrated approach that coalesces R&D, business and people to accelerate how we select, develop and adopt capabilities. Three goals will guide implementation:

ALIGNMENT TO PRIORITIES

GOAL
Priority driven naval R&D activities are strongly aligned to deliver the desired attributes of the Navy and Marine Corps After Next, driving efficiency and transforming our technology focus from a system-centric to mission-centric mindset. Resulting investment allocation is priority balanced and integrated across warfighting domains. Together, capability outcomes are optimized.

AGILE & RESPONSIVE BUSINESS

GOAL
The speed of naval R&D business decisions and execution exceeds the pace of technology innovation, accelerating advantages to the warfighter. Agility and financial flexibility enables leadership to take quick advantage of technology breakthroughs. Governance and policies differentiated between development and acquisition mitigate risk and accelerate results.

EMPOWERMENT OF OUR PEOPLE

GOAL
At all levels leaders set the conditions necessary for an innovation climate that enables bright minds to thrive. Authority is pushed to the innovator level where people in every position have the latitude, motivation and mission focused sense of urgency to find better ways to do their important work. Customer-focused on the warfighter, they accelerate the pace of delivery.

The Framework aligns the RDT&E continuum to common priorities. It balances allocations across investment portfolios. When fully synchronized, the development, delivery and adoption of capabilities is accelerated.

DESIRED OUTCOMES:
Coordination from leadership to the laboratory accelerates results. Streamlined decision-making and simplified business execution speeds delivery. Pushing authority down to the innovator level unleashes the talent of our people.
CONCLUSION

Competition for Maritime Superiority is intensifying. This Framework is a bold vision that responds to the competition by leveraging opportunities in fundamental trends to gain advantage and positions our Navy and Marine Corps to lead the future. To win, we must work together to Align, Allocate and Accelerate the RDT&E continuum. Maritime superiority results only when we are “first to field” decisive capabilities.

CALLS TO ACTION

Fielding new capability at the pace of technology innovation is the central imperative. This requires leaders to: leverage Framework priorities to align and synchronize R&D activities; allocate resources to promising initiatives earlier in the investment cycle, resolving risks sooner and at less cost to accelerate delivery; speed required actions to reduce institutional drag and position DON as a preferred partner; improve conditions necessary for innovation and push authority down to the innovator level.

PAYOFFS INCLUDE

• Capability adoption at the pace of technology development
• Executive alignment and resourcing for evolutionary/revolutionary projects with the highest potential to increase lethality, integration and interoperability
• Rapid technology insertion into the Fleet/Force with early prototyping and experimentation as an integral part of the development process
• Greater payoff from our RDT&E investments by managing technology development separately from product development
• Technology-enabled capabilities being used by trained operators in the Fleet and Force in volumes that matter

Discoveries play a vital, though not singular, role in delivering new capability. Ultimately, it is the people—our team of military, civilians, scientists, engineers, business professionals, contractors and dedicated staff—and the broader R&D community across industry, academia and government that will provide the capability needs of future naval forces, together.

RESULT:
The Framework will enable the Navy and Marine Corps After Next to deter conflict or win decisively and return safely.

Endnote:
1 National Naval Responsibilities: Ocean Acoustics, Undersea Weapons, Naval Engineering, Undersea Medicine, Sea-Based Aviation
“To win, we must be first to field decisive capabilities.”
Naval Research Enterprise Addendum to the
NAVAL RESEARCH AND DEVELOPMENT FRAMEWORK

MARITIME SUPERIORITY STARTS HERE
The Naval R&D Framework is a bold call to action: to be first to field decisive capabilities. It identifies key issues to address, as well as three components of the Framework—Align, Allocate and Accelerate—that will guide conversations and efforts across the “discovery to deployment” continuum of naval technology.

Longtime friends, colleagues and partners of the Office of Naval Research (ONR) will notice that the Framework replaces what was previously the “Naval S&T Strategy.” This is more than a change of title; it reflects a change in thinking about how all of us in naval science, research and technology development must work together to accelerate capabilities to the Fleet and Force.

Applying the Framework to the Naval Research Enterprise (NRE), which includes ONR, ONR-Global, the Naval Research Laboratory and PMR-51, results in transformations to how we align research to Framework Priorities, allocate our investment portfolios and accelerate decision-making to speed business execution.

Maritime Superiority Starts Here—Naval capabilities begin with discoveries made in science and technology. Talented scientists and engineers in the NRE, and across ONR partners in industry, academia and government labs, draw upon basic research for new knowledge to develop new technologies that ultimately become new capabilities delivered by the acquisition community. We do this well, but must evolve to go beyond traditional boundaries, reducing the time it takes to deliver capabilities into the hands of naval warfighters.

This NRE Addendum to the Naval R&D Framework includes additional detail about how the priorities in the Framework correlate to research subtopics. It further details how each of ONR’s six Integrated Research Portfolios (IRPs) address the priorities for their respective naval domain customers. For our partners, the IRPs illuminate research direction and challenges that must be overcome.

When applied to the NRE, the Framework results in:
- Priority-driven, IRPs mapped to core naval functions and domains
- Research business processes with greater agility and flexibility to accelerate technology innovation
- The NRE accepting more risk in truly game-changing technology prospects
- High-velocity learning to speed technology absorption through prototyping, experimentation and demonstration with the warfighter

Supporting our Sailors and Marines is more than just a job—it’s a mission, and a challenge we will accept and meet, together.

RADM David J. Hahn, USN
Chief of Naval Research
Priorities

<table>
<thead>
<tr>
<th>Framework Priority</th>
<th>Objectives</th>
<th>Research Sub Topics</th>
<th>*Future Force Attributes</th>
</tr>
</thead>
</table>
| Augmented Warfighter | - Enhance decision-making speed and quality
- Improve human-machine interfaces and teaming
- Mitigate tactical-level risk to our people and command, control and communications degradation | Algorithmic phenomenology; autonomy; artificial intelligence; machine reasoning; cognitive science; decision-making; human systems design; human-machine interaction; and training and education | Adaptive, Agile, Autonomous, Connected, Distributable, Interoperable, Lethal, Trained, Fast |
| Integrated & Distributed Forces | - Enhance dynamic, synchronized actions across forces
- Support collaboration spanning geography, domains, platforms and joint partners; leverage satellite and Precision Navigation and Timing advancements
- Increase flexibility and reach of the naval force through incorporation of autonomous and disaggregate systems | Autonomous platforms; communications and networks; networked sensors and weapons; positioning, navigation and timing; and coordinated spectrum and signature management | Adaptive, Agile, Autonomous, Connected, Distributable, Interoperable, Scalable, Fast |
| Operational Endurance | - Enable maneuverability, efficiency, and resiliency for sustained operations by warfighters, systems and platforms (regardless of the threat or operating environment)
- Improve platform-level energy storage/efficiency for propulsion and weapons systems
- Develop wide-area and force wide disinformation deception and decoys | Power generation, storage, energy efficiency; survivability, endurance and availability; security/protection; platform affordability; high-performance materials; biomedical; and logistics and sustainment | Adaptive, Agile, Defensible, Distributable, Efficient, Sustainable |
| Sensing & Sense-Making | - Transform vast data into timely knowledge
- Enable persistent awareness and understanding, and optimized operation (regardless of the threat or operating environment)
- Integrate artificial intelligence into C4ISR networks scalable to theater wide | Multi-domain and multi-spectral sensors; digital algorithms and data sciences; quantum information sciences; and modeling, simulation and forecasting of the operational environment | Adaptive, Agile, Autonomous, Connected, Distributable, Interoperable, Scalable, Fast |
| Scalable Lethality | - Enable offensive and defensive actions that are multi-domain, integrated, cost-effective, and kinetic and non-kinetic
- Deliver directed energy and low cost, high probability of kill standoff strike | Cyber/algorithms effects; countermeasures and decoys; counter-weapons, threat neutralization and explosive ordnance disposal; targeting sensors; directed energy and electric weapons; energetics; and lower cost, higher performance weapons | Adaptive, Agile, Autonomous, Connected, Defensible, Distributable, Efficient, Fast, Interoperable, Lethal, Scalable, Sustainable |

*Future force attributes derived from OPNAV and HQMC assessments
AT A GLANCE

Enables strategically agile and tactically flexible Marine Air Ground Task Forces with naval capability to project power to and from the littorals and conduct operations ashore.

WHY THIS IS IMPORTANT

- The naval expeditionary force will conduct maneuver warfare in increasingly challenging environments and complex terrain
- Technology proliferation is increasing peer- to near-peer adversaries
- Information is increasingly used as a weapon
- Adversaries are gaining electromagnetic and acoustic signatures advantages
- Contested maritime and urban domains

CURRENT SUPPORT OF FRAMEWORK PRIORITIES

- Augmented Warfighter
- Operational Endurance
- Integrated/Distributed Force
- Sensing & Sense Making
- Scalable Lethality

DESCRIPTION

Naval expeditionary forces bring unique and powerful capabilities to Combatant Commanders but the evolving environments present challenges compounded by emerging complex hybrid threats.

The renewed focus on “expeditionary maneuver” spans numerous technical disciplines to address the unique problems imposed by being naval and expeditionary where managing size, weight, power, cost—SWAP-C—information warfare and signature is vital.

In particular, expeditionary C4 and decision support requires small, form-factor packages to minimize volume that are man- or ground vehicle-portable and deployable on amphibious ships. Complementary, flexible and scalable effects must be achieved through a modern combined arms approach that embraces more intelligent weapons and information warfare across five domains—air, land, sea, space and cyber. Criteria for naval expeditionary forces include:

- Design for both austere and urban conditions
- Lightweight, deployable in character
- Support a force that can distribute, disaggregate and reform
- Fully integrated with joint and naval forces
- Operate across and through the land-sea interface

Resultant capabilities must be cheap enough to buy, simple to use, robust enough to survive yet advanced enough to prevail against peer and near-peer adversaries.

Additionally, technologies addressing complex multicultural terrain will continue to improve the warfighter’s ability to interact with target populations, identify threat activities, solve complex problems, and adapt to ambiguous situations via kinetic and non-kinetic means—at a tempo that outpaces that of our adversaries.
Using dual-mode guidance, GPS and Semi-active Laser (SAL), ACERM will be capable of high-precision strikes resulting in a reduction of rounds required per kill, collateral damage, and operational costs. Its near-vertical approach will enable strikes against targets in deep defilade and increases warhead effectiveness. These attributes of ACERM will allow battalions and companies to engage targets in larger operational areas with increased flexibility, responsiveness and lethality, without reliance on external fires.

Unlike a conventional mortar that flies a ballistics trajectory, ACERM utilizes modified glide architecture without in-flight propulsion to increase range. Having demonstrated a 3x extended range compared to conventional mortar systems in recent flight tests, next steps will see the ACERM demonstrate improved accuracy through SAL guidance and increased experimentation with the Marine Corps to facilitate an accelerated path to acquisition.
AT A GLANCE
An increasingly interconnected force with more rapid and effective decision-making is enabled by persistent sensing, advanced data analytics, digital integration and assured spectrum access.

WHY THIS IS IMPORTANT
- Decreasing advantage in information and cyber superiority against state and non-state actors
- Information/cyber threats evolving and proliferating at unprecedented rates.
- Data volume, variety, veracity and velocity requires dramatically improved analysis and management techniques
- Expanding commercial/military spectrum use, along with universal availability of high-quality components, limit naval applications

CURRENT SUPPORT OF FRAMEWORK PRIORITIES

<table>
<thead>
<tr>
<th>Augmented Warfighter</th>
<th>Operational Endurance</th>
<th>Integrated/Distributed Force</th>
<th>Sensing & Sense Making</th>
<th>Scalable Lethality</th>
</tr>
</thead>
</table>

DESCRIPTION
This portfolio spans three strategic areas:
- Assured Command and Control (C2)
- Electromagnetic Maneuver Warfare (EMW)
- Full Spectrum Cyber technologies.

Assured C2 is enabled by persistent sensing, timely intelligence and decision support tools that will accelerate “data to decisions” timelines. Leveraging machine reasoning and data analytics, an end-to-end approach achieves protected data transport, resilient networking, and assured apps and services that result in trusted information and actions. The need for increased spectral efficiency and diversity, coupled with the information domain, is critical to our naval freedom of maneuver on a global scale.

EMW efforts include electromagnetic spectrum management technologies and techniques that fluidly combine communications, surveillance electronic warfare (EW), and electronics to understand and shape the battlespace. Ultra-wide band systems, which continuously monitor the spectrum, are needed to facilitate optimized use.

Intrinsically secure and resilient computing systems with robust computational and communications architectures will provide the capability to manipulate and interpret rapidly growing amounts of data in support of C2, Combat Systems (CS), and Intelligence Surveillance and Reconnaissance (ISR) effects. Assuring secure access to the full spectrum is essential to operate at will or deny adversary access in more complex and dynamic future EMW environments.

Full-Spectrum Cyber approaches must be developed to protect our networks, data, information systems and real-time control systems. Total platform cyber protection is becoming an essential element of Information Warfare. Cyber technologies provide the ability to assess and counter potential threats. Future information systems must provide agile capabilities for achieving and maintaining communications and data integrity in rapidly evolving, dispersed and disadvantaged environments. Computational architectures need more resilient information infrastructure through assured system design, automated defensive tools for advanced persistent threats, hardening of the hosts and data assurance.
ONR-sponsored research at numerous academic institutions and the Naval Research Laboratory were critical to the discovery and application of Gallium Nitride (GaN) as a next-generation material for semi-conductors, which now enable the high-power capability of advanced radars for naval ships and aircraft.

As a semiconductor material, GaN devices offer much greater energy efficiency than silicon, the previous industry standard. GaN transistors have roughly one-tenth the resistance of silicon-based transistors, allowing for much higher energy efficiency, faster switching frequency and smaller power-electronic systems.

Getting to the point of making GaN into a usable material—for the Navy and the commercial world—took nearly 30 years of scientific investment. The creation of single crystal GaN films in the late 1960s, and the subsequent development of millimeter-wave GaN devices and amplifiers, are products of ONR-funded efforts.
AT A GLANCE

Concepts, systems and component technologies that improve the performance and survivability of naval ships/submarines in an increasingly distributed yet interconnected force.

WHY THIS IS IMPORTANT

- Threats to the fleet/force are increasing in number, range, precision and effectiveness of adversary weapons and sensors
- Sustainable operations in increasingly diverse environments require affordable, modular, survivable and rapidly upgradeable platforms
- Maritime superiority requires enduring, self-sustaining platforms able to deter/defeat aggression through overwhelming capability

CURRENT SUPPORT OF FRAMEWORK PRIORITIES

Augmented Warfighter
Operational Endurance
Integrated/Distributed Force
Sensing & Sense Making
Scalable Lethality

DESCRIPTION

New platforms will need to deliver advanced weapons, as well as increased mobility and survivability. Power and energy for surface ships is a key enduring investment for the efficiency of legacy platforms, while enabling the power requirements of future electric weapons. High-power electric weapons and sensors have advanced significantly, creating technical requirements for dramatic increases in energy management and pulsed power.

Computational tools that model the platform’s interaction with the anticipated operational environment are essential to the development of integrated designs and protections such as stealth, counter directed energy weapons, tactical decision aids, electronic warfare and hard-kill systems.

Undersea dominance remains a priority as the Navy designs and builds the next generation of strategic and tactical submarines. Resurgence by peer adversaries in ultra-quiet submarine technology is closing the gap in undersea warfare.

Platform mobility and survivability is critical to successful operational strategies calling for more distributed forces. Advancements in materials, acoustics, intelligent control and hydro, electro and computational mechanics are required, as well as countermeasures for ships and submarines.

Platforms will become more self-sustaining to extend endurance and forward presence while reducing the logistics tail for fuel. Future platforms must have reduced sustainment requirements and be easier to maintain. Efforts are focused on platform interfaces as well as platform efficiency to reduce sustainment needs. Enhanced interface standards and modularity provide flexibility, ease of maintenance and upgrades.

Finally, affordability permeates all modernization concepts. The development of validated design tools capable of rapidly and accurately analyzing and evaluating novel platforms with advanced system performance characteristics is a high priority.
HOW WE ARE PROCEEDING

MOBILITY AND SURVIVABILITY
- Advanced Platform Efficiency, Agility and Affordability
- Autonomous and Unmanned Vehicle Mobility
- Innovative Ship-to-Shore Technologies
- Rigorous Platform Performance Models
- Low Observable (LO) and Counter-LO Technologies
- Soft-kill Techniques and Counter Directed Energy
- Active and Adaptive Protection Technologies
- Ultra-Lightweight and Low-Cost Armor
- Automated Response and Recovery Technologies
- Acoustics for Ohio and Virginia Submarine Replacements

POWER AND ENERGY CONSIDERATIONS
- Pulsed Power Architectures
- Cyber-secure Power Architectures
- Increased Efficiency and Power Density
- Power Conversion, Switching, Distribution and Control
- Efficient Power Generation Machinery
- Electrochemical, Thermal, Dielectric and Kinetic Energy Storage
- Thermal Management
- Resilient Power Networks for Shore-Based Critical Infrastructure

OPTIMIZED PAYLOAD CAPABILITIES
- Modeling and Simulation Tools
- Modular/Affordable Platforms
- Advanced Structural, Mechanical and Electrical Support Infrastructure
- Platform Performance for Range/Loiter/Payload
- Undersea weapons and countermeasures

PLATFORM DESIGN & SUSTAINMENT
- Platform, Aircraft, Payload and Weapons Planning and Movement
- Affordable Fuel Distribution
- Fixed-Wing and Rotorcraft Durability, Maritime Compatibility
- Multi-Disciplinary Design and System Approaches

AFFORDABLE FLEET/FORCE MODERNIZATION
- Modular Systems
- Interfaces and Standards
- New Materials and Methods to Increase Reliability and Reduce Maintenance Costs
- Technology Advancement During Shipyard Midlife Overhaul and New Construction

CARACaS (Control Architecture for Robotic Agent Command and Sensing) was development by ONR and enables boats conceivably of any size to become swarming, unmanned surface vehicles (USVs). It allows boats to operate autonomously, without a Sailor physically needing to be at the controls—including operating in sync with other unmanned vessels; choosing their own routes; swarming to interdict enemy vessels; and escorting/protecting naval assets.

This first-of-its-kind technology was successfully demonstrated over two weeks in August 2014 on the James River in Virginia. It allows unmanned Navy vessels to overwhelm an adversary, while its sensors and software enable swarming capability, giving naval warfighters a decisive edge.

Autonomous swarmboats could play a vital role in protecting U.S. Navy ships, ports and commerce.
AT A GLANCE

Sea-based aviation, including platform and weapons research is focused on new or enhanced capabilities to defend against, and/or deter, disable, damage, defeat or destroy adversaries at extended ranges and speeds.

WHY THIS IS IMPORTANT

• Increased numbers, range, precision and lethality of adversary weapons neutralize current U.S. advantages
• Naval forces must be able to effectively engage targets with survivable, cost-effective weapons
• Future scenarios require sufficient range, speed and accuracy to nullify any adversary’s ability to conduct effective operations

CURRENT SUPPORT OF FRAMEWORK PRIORITIES

Augmented Warfighter
Operational Endurance
Integrated/Distributed Force
Sensing & Sense Making
Scalable Lethality

DESCRIPTION

Offsetting technologies must continue to provide naval forces with an edge in any future battle. In the future battlespace, electric weapons with deep magazines and low cost-per-kill will be required to engage large numbers of threats simultaneously.

Directed-energy systems will be used in layered defense to counter ISR capabilities, defeat or destroy threats, both before and during combat.

Networked weapons will improve the probability of kill and reduce the need for multiple weapons targeting the same platform. Advanced warhead materials will decrease the size of rounds. Electromagnetic railguns will allow more, smaller and longer-range rounds.

Future naval fires efforts include targeting, decision support and precision strike by air, surface, undersea and expeditionary forces.

Improved aerodynamic control will allow unprecedented maneuverability for unconventional aircraft designs. Advanced aircraft power and propulsion technologies, such as variable-cycle advanced technology, will provide more efficient operation over a wider range of flight conditions. They will also enable technologies for providing the power and thermal management of electric weapons for next-generation aircraft. Advances in structures and materials will allow for reduced life-cycle costs as well as stronger and lighter airframes.

Autonomous systems will reduce operational risk and improve mission performance. For today’s missions, autonomy can improve manning effectiveness and provide options for mission tasks. For future missions, autonomy can provide new persistent, pervasive and rapid response capabilities to do tasks that would be unaffordable or impractical today.
The military began experimenting with laser weapons in the late 1970s. Although they demonstrated high output levels, these systems often were very large, difficult to integrate, costly and had insufficient target engagement ranges. With the advent of solid-state laser technologies, systems improved in size, weight and power to make shipboard compatibility practical.

Solid-state laser weapons cost about $1 per shot to fire. They allow escalating power projection (deter, damage or destroy) and are highly effective for countering unmanned aerial vehicles and small boats. They have deep magazines, depending only on a ship's electrical power and cooling to fire.

As a result of ONR programs, Naval Research Laboratory science and industry development, higher-power lasers are now under development, providing defense against more robust threats.
INTEGRATED RESEARCH PORTFOLIO

UNDERSEA BATTLESPACE AND MARITIME DOMAIN ACCESS

ARCTIC AND GLOBAL PREDICTION

LITTORAL GEOSCIENCES AND OPTICS

MARINE MAMMALS AND BIOLOGY

MARINE METEOROLOGY

MARITIME SENSING

OCEAN ACOUSTICS

OCEAN ENGINEERING & MARINE SYSTEMS

PHYSICAL OCEANOGRAPHY

RESEARCH FACILITIES

SPACE ENVIRONMENT

UNDERSEA SIGNAL PROCESSING

AT A GLANCE
Enables maritime domain access for naval forces to operate in contested ocean environments through undersea threat neutralization and maritime battlespace awareness.

WHY THIS IS IMPORTANT
• Proliferation of ultra-quiet submarines and undersea mine technology is a threat
• Expanded use of autonomous undersea vehicles can be an advantage for U.S. naval forces
• Maritime domain awareness is a warfighting advantage for naval forces to maintain
• Changing environmental conditions are increasing the complexity of predicting the ocean battlespace

CURRENT SUPPORT OF FRAMEWORK PRIORITIES

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented Warfighter</td>
</tr>
<tr>
<td>Operational Endurance</td>
</tr>
<tr>
<td>Integrated/Distributed Force</td>
</tr>
<tr>
<td>Sensing & Sense Making</td>
</tr>
<tr>
<td>Scalable Lethality</td>
</tr>
</tbody>
</table>

ENDURING RESEARCH RESPONSIBILITIES

ARCTIC AND GLOBAL PREDICTION
LITTORAL GEOSCIENCES AND OPTICS
MARINE MAMMALS AND BIOLOGY
MARINE METEOROLOGY
MARITIME SENSING
OCEAN ACOUSTICS
OCEAN ENGINEERING & MARINE SYSTEMS
PHYSICAL OCEANOGRAPHY
RESEARCH FACILITIES
SPACE ENVIRONMENT
UNDERSEA SIGNAL PROCESSING

DESCRIPTION
Assuring access to the global maritime domain begins with the ability to sense and predict ocean environmental properties in support of both tactical and strategic naval operations. Remote sensors (including space), autonomous ocean observation, and prediction/forecasting capability provide a distinct advantage for commanders who rely on accurate predictions and actionable information.

Distributed and networked surface and underwater sensors provide real-time data and predictions for improving battlespace awareness and decision-making.

Unmanned and autonomous underwater vehicles will provide increasing support to core naval missions in antisubmarine warfare (ASW), mine warfare (MIW), explosive ordnance disposal, and naval special warfare.

The objective is to provide next-generation sensors and autonomous platforms to augment traditional naval vessels. These novel capabilities will allow greater capacity and provide greatly increased warfighting capabilities.

Forecasting for safety of naval operations is also a critical mission that requires ongoing research to account for the changing dynamics in the open-ocean, Arctic, and littorals. Major subjects include:

• Understanding and synthesis of ocean-atmosphere-land processes and interactions
• Real-time environmentally adaptive sensors, data processing and systems that can be distributed and operated effectively (without perfect knowledge)
• Modeling support for the maritime warfare areas such as sensing, tracking, navigation, communications, neutralization and exploitation

The foundation of maritime access is built upon strong, geophysical models for atmosphere and ocean monitoring/prediction—knowledge of the battlespace is a key warfighting advantage.
HOW WE ARE PROCEEDING

ACHIEVE AND MAINTAIN UNDERSEA DOMINANCE

- Adaptive, automated and autonomous technologies to detect, classify, localize and track submarines and threats in littoral, deep and under-ice ocean conditions
- Off-board sensing and cooperative vehicle autonomy with increased endurance
- Data exfiltration and networking in unmanned systems to expand reach, reduce threat exposure and deny or restrict adversarial maneuver
- Next-generation data and information processing to advance ASW, MIW, amphibious warfare and decision support from the regional to the theater level
- Rapid, autonomous neutralizing of mines from deep water through the beach exit zone

MOBILE AUTONOMOUS ENVIRONMENTAL SENSING AWARENESS

- Autonomous sensing of global maritime and littoral environments (up to the beach exit zone)
- Environmental sensing that adapts to changing conditions
- Autonomous in-buoy signal processing

ENVIRONMENTAL PREDICTION FROM TACTICAL TO THEATER LEVELS

- Fully coupled (ocean-atmosphere-land-wave-ice) global, regional and local modeling and prediction for operational planning at tactical, strategic and climate scales
- Forecasts for refractivity, duct heights, fog, rain, clouds, visibility, trafficability and tropical cyclones at global, regional and tactical scales to increase mission success
- SATCOM exfiltration of networked sensors
- Satellite remote sensing
- Space weather as critical to communications and HF radar
- Ocean acoustic prediction models

INTELLIGENT ADAPTATION OF SYSTEMS PERFORMANCE TO THE ENVIRONMENT

- Optimize sensing, situational awareness and autonomous behaviors by adapting in dynamic, uncertain and unstructured environments
- Predict system performance (a priori and in situ) from environment, threat and tactical context
- Undersea communications and networked systems of longer range UUVs

Nearby 25 years ago, ONR recognized the potential of unmanned underwater vehicles (UUVs) to solve some of the Navy’s important operational issues—especially in the areas of mine countermeasures, naval special warfare, and the need for rapid environmental assessment.

Small UUVs such as the man-portable REMUS 100—originally developed with ONR’s support at the Woods Hole Oceanographic Institution—were seen as ideal platforms for the challenging very shallow water environment. The REMUS 100 would later become the Mk-18 Mod 1 Swordfish program, which saw its first operational use during port clearance operations in Umm Qasr, Iraq during Operation Iraqi Freedom in 2003. UUVs with ONR-developed sensors are now the core mine-hunting platforms for the newly formed expeditionary mine countermeasures teams, which have recently completed their first proof-of-concept deployments.
AT A GLANCE
People underpin all missions. Advances in autonomy, human-machine teaming, command and control, training and education, human performance optimization, protective equipment, medicine, neurosciences, and bio-engineered systems will ensure their advantage.

WHY THIS IS IMPORTANT
• Complex missions involving human/machine teaming are changing manning requirements
• Challenging operating environments drive dynamic decision-making and training needs
• Answers increased demand for warfighter resiliency, adaptability and survivability

CURRENT SUPPORT OF FRAMEWORK PRIORITIES

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented Warfighter</td>
</tr>
<tr>
<td>Operational Endurance</td>
</tr>
<tr>
<td>Integrated/Distributed Force</td>
</tr>
<tr>
<td>Sensing & Sense Making</td>
</tr>
<tr>
<td>Scalable Lethality</td>
</tr>
</tbody>
</table>

DESCRIPTION
People are the most critical element of military performance. As technology progresses, so must manpower and personnel technologies to enhance recruitment, retention and force structure through advanced selection, development and assessment tools. A healthy force that is both cognitively and physically resilient is essential.

Training and education needs are met through research to modernize and accelerate learning. These technologies create a technical foundation for agile, deployable, compact, affordable, integrated cross-platform, multi-mission training that aligns to point-of-need.

Ongoing naval warfighter health and survivability efforts optimize state-of-the-art health, fitness, performance, life-saving and sustaining technologies. Warfighter effectiveness is enhanced with human systems design and decision support research to provide commanders with an environments to inform allocation of forces to best effect. Warfighter advantage is further achieved through model-based performance assessment and simulation technologies using live, virtual and constructive elements.

In addition, Sailors and Marines will need technologies to help make complex decisions quickly, with limited and/or uncertain information. Rapid assimilation and action on diverse, complex and/or ambiguous information will require new analytical tools. Naval warfare challenges posed by nontraditional adversaries can be addressed through the use of social, political, economic, ethnic and religious factors in training and decision-support systems.

Warfighter effectiveness and efficiency can also be enhanced through bioengineered and biorobotic systems. Bioengineering bridges the science of biology and the art of naval engineering, such as, biomechanics and fluid mechanics of underwater propulsion; artificial muscle-based actuators and their neural control for the advancement of autonomous systems; and, finally, synthetic biology offers the potential to design purpose-specific organisms for environmental sensing, production of needed high-value materials, tissue cell growth, or possibly, information processing in autonomous systems.

These investments reduce costs for the Navy and Marine Corps while enhancing readiness.
Fleet Integrated Synthetic Training (FIST) develops, tests and demonstrates simulator training technology, blending various combinations of live, virtual and constructive exercises that include virtual assets and adversaries.

FIST is configurable technologies that enable endless possibilities without the expense and logistical challenges of putting hundreds of ships at sea and aircraft in the sky, while also supporting OPSEC. It enables users to confront artificially intelligent forces in countless virtual settings—and train for multiple missions simultaneously. The system can replicate situations involving aircraft carriers, helicopters, lethal and nonlethal weapons and more.

FIST was created in response to an urgent need for a more portable way for ships to train in any given operating area. It allows Sailors to “train like they fight” by presenting realistic forces in a visual, tactical and operational environment.